Proper Orthogonal Decomposition Methods for Partial Differential Equations

Proper Orthogonal Decomposition Methods for Partial Differential Equations PDF Author: Zhendong Luo
Publisher: Academic Press
ISBN: 0128167998
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
Proper Orthogonal Decomposition Methods for Partial Differential Equations evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R&D problems. Explains ways to reduce order for PDEs by means of the POD method so that reduced-order models have few unknowns Helps readers speed up computation and reduce computation load and memory requirements while numerically capturing system characteristics Enables readers to apply and adapt the methods to solve similar problems for PDEs of hyperbolic, parabolic and nonlinear types

Proper Orthogonal Decomposition Methods for Partial Differential Equations

Proper Orthogonal Decomposition Methods for Partial Differential Equations PDF Author: Zhendong Luo
Publisher: Academic Press
ISBN: 0128167998
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
Proper Orthogonal Decomposition Methods for Partial Differential Equations evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R&D problems. Explains ways to reduce order for PDEs by means of the POD method so that reduced-order models have few unknowns Helps readers speed up computation and reduce computation load and memory requirements while numerically capturing system characteristics Enables readers to apply and adapt the methods to solve similar problems for PDEs of hyperbolic, parabolic and nonlinear types

Proper Orthogonal Decomposition in Optimal Control of Fluids

Proper Orthogonal Decomposition in Optimal Control of Fluids PDF Author: S. S. Ravindran
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 34

Get Book Here

Book Description


Reduced Basis Methods for Partial Differential Equations

Reduced Basis Methods for Partial Differential Equations PDF Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319154311
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

Trust-region Proper Orthogonal Decomposition for Flow Control

Trust-region Proper Orthogonal Decomposition for Flow Control PDF Author: E. Arian
Publisher:
ISBN:
Category : Approximation theory
Languages : en
Pages : 26

Get Book Here

Book Description
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation of physical processes governed by partial differential equations, e.g., fluid flows. It can also be used to develop reduced order control models. Fundamental is the computation of POD basis functions that represent the influence of the control action on the system in order to get a suitable control model. We present an approach where suitable reduced order models are derived successively and give global convergence results.

Snapshot Location in Proper Orthogonal Decomposition for Linear and Semi-linear Parabolic Partial Differential Equations

Snapshot Location in Proper Orthogonal Decomposition for Linear and Semi-linear Parabolic Partial Differential Equations PDF Author: Zhiheng Liu
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
It is well-known that the performance of POD and POD-DEIM methods depends on the selection of the snapshot locations. In this work, we consider the selections of the locations for POD and POD-DEIM snapshots for spatially semi-discretized linear or semi-linear parabolic PDEs. We present an approach that for a fixed number of snapshots the optimal locations may be selected such that the global discretization error is approximately the same in each associated sub-interval. The global discretization error is assessed by a hierarchical-type a posteriori error estimator developed from automatic time-stepping for systems of ODEs. We compare the global discretization error of this snapshot selection on error equilibration for the full order model (\textbf{FOM}) with that for the reduced order model (\textbf{ROM}) to study its impact. This contribution also shows that the equilibration of the global discretization error for the \textbf{FOM} is preserved by its corresponding POD and POD-DEIM-based \textbf{ROM}. The numerical examples illustrating the performance of this approach are provided.

Proper Orthogonal Decomposition

Proper Orthogonal Decomposition PDF Author: Sarah Katherine Locke
Publisher:
ISBN:
Category :
Languages : en
Pages : 95

Get Book Here

Book Description
"Proper orthogonal decomposition (POD) projection errors and error bounds for POD reduced order models of partial differential equations have been studied by many. In this research we obtain new results regarding POD data approximation theory and present a new difference quotient (DQ) approach for computing the POD modes of the data. First, we improve on earlier results concerning POD projection errors by extending to a more general framework that allows for non-orthogonal POD projections and seminorms. We obtain new exact error formulas and convergence results for POD data approximation errors, and also prove new pointwise convergence results and error bounds for POD projections. We consider both the discrete and continuous cases of POD within this generalized framework. We also apply our results to several example problems, and show how the new results improve on previous work. Next, we consider the relationship between POD, difference quotients (DQs), and pointwise ROM error bounds. It is known that including DQs is necessary in order to prove optimal pointwise in time error bounds for POD reduced order models of the heat equation. We introduce a new approach to including DQs in the POD procedure to further investigate the role DQs play in POD numerical analysis. Instead of computing the POD modes using all of the snapshot data and DQs, we only use the first snapshot along with all of the DQs and special POD weights. We show that this approach retains all of the numerical analysis benefits of the standard POD DQ approach, while using a POD data set that has half the number of snapshots as the standard POD DQ approach, i.e., the new approach is more computationally efficient. We illustrate our theoretical results with numerical experiments"--Abstract, page iii.

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations PDF Author: Jan S Hesthaven
Publisher: Springer
ISBN: 3319224700
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

Numerical Homogenization by Localized Decomposition

Numerical Homogenization by Localized Decomposition PDF Author: Axel Målqvist
Publisher: SIAM
ISBN: 1611976456
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
This book presents the first survey of the Localized Orthogonal Decomposition (LOD) method, a pioneering approach for the numerical homogenization of partial differential equations with multiscale data beyond periodicity and scale separation. The authors provide a careful error analysis, including previously unpublished results, and a complete implementation of the method in MATLAB. They also reveal how the LOD method relates to classical homogenization and domain decomposition. Illustrated with numerical experiments that demonstrate the significance of the method, the book is enhanced by a survey of applications including eigenvalue problems and evolution problems. Numerical Homogenization by Localized Orthogonal Decomposition is appropriate for graduate students in applied mathematics, numerical analysis, and scientific computing. Researchers in the field of computational partial differential equations will find this self-contained book of interest, as will applied scientists and engineers interested in multiscale simulation.

Model Order Reduction: Theory, Research Aspects and Applications

Model Order Reduction: Theory, Research Aspects and Applications PDF Author: Wilhelmus H. Schilders
Publisher: Springer Science & Business Media
ISBN: 3540788417
Category : Mathematics
Languages : en
Pages : 471

Get Book Here

Book Description
The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Optimal and Suboptimal Control of Partial Differential Equations

Optimal and Suboptimal Control of Partial Differential Equations PDF Author: Stefan Volkwein
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 131

Get Book Here

Book Description