Projected Gradient Descent Methods for Simultaneous-source Seismic Data Processing

Projected Gradient Descent Methods for Simultaneous-source Seismic Data Processing PDF Author: Rongzhi Lin
Publisher:
ISBN:
Category : Geophysics
Languages : en
Pages : 0

Get Book Here

Book Description
Simultaneous-source acquisition is a seismic data acquisition technology that has become quite popular in recent years due to its economic advantages. Contrary to the conventional seismic acquisition, where one records the seismic response of only one source at a time, in simultaneous source acquisition, an array of receivers record the response of more than one source. The latter leads to a saving in acquisition time, but it creates new problems in subsequent data processing stages where each seismic record must correspond to the response of one single source. The basic idea for simultaneous source data processing is to separate the sources and thereby estimate the responses one would have acquired via a conventional seismic data acquisition. Then one can adopt a traditional seismic workflow to process and invert the seismic data. This thesis focuses on developing inversion schemes for separating simultaneous-source data. I pay particular attention to strategies based on the Projected Gradient Descent (PGD) method with a projection synthesized via robust denoising algorithms. First, I propose adopting a robust and sparse Radon transform to define a coherence pass projection operator to guarantee solutions that honour simultaneous source records. I show that a critical improvement in convergence is attainable when the coherence pass projection originates from a robust and sparse Radon transform. The latter is a consequence of having an iterative source separation algorithm that applies intense denoising to erratic blending noise in its initial iterations. In addition, I also propose an inversion scheme for simultaneous-source data separation based on a robust low-rank approximation algorithm. A robust Multichannel Singular Spectrum Analysis (MSSA) filtering is adopted as the projection operator to suppress source interferences in the frequency-space domain. The MSSA method is reformulated as a robust optimization problem that includes a low-rank Hankel matrix constraint, written as the product of two matrices of lower dimension obtained by the bifactored gradient descent (BFGD) method. In the second part of my thesis, I explore an inversion scheme for source separation and source reconstruction that honours actual source coordinates. The proposed method adopts a projected gradient descent optimization with a reduced-rank MSSA projection operator. I propose to adopt an Interpolated-MSSA (I-MSSA) to separate and reconstruct sources in situations where the acquired simultaneous source data correspond to sources with ar- arbitrary irregular-grid coordinates. Additionally, a faster and computational-efficient MSSA (FMSSA) algorithm was applied to speed up the method.

Projected Gradient Descent Methods for Simultaneous-source Seismic Data Processing

Projected Gradient Descent Methods for Simultaneous-source Seismic Data Processing PDF Author: Rongzhi Lin
Publisher:
ISBN:
Category : Geophysics
Languages : en
Pages : 0

Get Book Here

Book Description
Simultaneous-source acquisition is a seismic data acquisition technology that has become quite popular in recent years due to its economic advantages. Contrary to the conventional seismic acquisition, where one records the seismic response of only one source at a time, in simultaneous source acquisition, an array of receivers record the response of more than one source. The latter leads to a saving in acquisition time, but it creates new problems in subsequent data processing stages where each seismic record must correspond to the response of one single source. The basic idea for simultaneous source data processing is to separate the sources and thereby estimate the responses one would have acquired via a conventional seismic data acquisition. Then one can adopt a traditional seismic workflow to process and invert the seismic data. This thesis focuses on developing inversion schemes for separating simultaneous-source data. I pay particular attention to strategies based on the Projected Gradient Descent (PGD) method with a projection synthesized via robust denoising algorithms. First, I propose adopting a robust and sparse Radon transform to define a coherence pass projection operator to guarantee solutions that honour simultaneous source records. I show that a critical improvement in convergence is attainable when the coherence pass projection originates from a robust and sparse Radon transform. The latter is a consequence of having an iterative source separation algorithm that applies intense denoising to erratic blending noise in its initial iterations. In addition, I also propose an inversion scheme for simultaneous-source data separation based on a robust low-rank approximation algorithm. A robust Multichannel Singular Spectrum Analysis (MSSA) filtering is adopted as the projection operator to suppress source interferences in the frequency-space domain. The MSSA method is reformulated as a robust optimization problem that includes a low-rank Hankel matrix constraint, written as the product of two matrices of lower dimension obtained by the bifactored gradient descent (BFGD) method. In the second part of my thesis, I explore an inversion scheme for source separation and source reconstruction that honours actual source coordinates. The proposed method adopts a projected gradient descent optimization with a reduced-rank MSSA projection operator. I propose to adopt an Interpolated-MSSA (I-MSSA) to separate and reconstruct sources in situations where the acquired simultaneous source data correspond to sources with ar- arbitrary irregular-grid coordinates. Additionally, a faster and computational-efficient MSSA (FMSSA) algorithm was applied to speed up the method.

Seismic Inversion

Seismic Inversion PDF Author: Gerard T. Schuster
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377

Get Book Here

Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.

Geophysical Signal Analysis

Geophysical Signal Analysis PDF Author: Enders A. Robinson
Publisher: SEG Books
ISBN: 1560801042
Category : Digital filters (Mathematics).
Languages : en
Pages : 481

Get Book Here

Book Description
Addresses the construction, analysis, and interpretation of mathematical and statistical models. The practical use of the concepts and techniques developed is illustrated by numerous applications. The chosen examples will interest many readers, including those engaged in digital signal analysis in disciplines other than geophysics.

Seismic Data Analysis

Seismic Data Analysis PDF Author: Özdoğan Yilmaz
Publisher: SEG Books
ISBN: 1560800941
Category : Science
Languages : en
Pages : 2065

Get Book Here

Book Description
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572

Get Book Here

Book Description


Fundamentals of Geophysical Data Processing

Fundamentals of Geophysical Data Processing PDF Author: Jon F. Claerbout
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 296

Get Book Here

Book Description


Deconvolution of Seismic Data

Deconvolution of Seismic Data PDF Author: V. K. Arya
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 344

Get Book Here

Book Description


Independent Component Analysis

Independent Component Analysis PDF Author: Aapo Hyvärinen
Publisher: John Wiley & Sons
ISBN: 0471464198
Category : Science
Languages : en
Pages : 505

Get Book Here

Book Description
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Full Seismic Waveform Modelling and Inversion

Full Seismic Waveform Modelling and Inversion PDF Author: Andreas Fichtner
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.

Seismic Inversion

Seismic Inversion PDF Author: Yanghua Wang
Publisher: John Wiley & Sons
ISBN: 1119258049
Category : Science
Languages : en
Pages : 256

Get Book Here

Book Description
Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.