Author: Dmitri Rabounski
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 108
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Progress in Physics, vol. 1/2015
Author: Dmitri Rabounski
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 108
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 108
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Progress in Physics, vol. 1/2016
Author: Dmitri Rabounski
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 94
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 94
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Progress in Physics, vol. 1/2017
Author: Dmitri Rabounski
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 56
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 56
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®
Author: Raymond C. Rumpf
Publisher: Artech House
ISBN: 1630819271
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.
Publisher: Artech House
ISBN: 1630819271
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.
PROGRESS IN PHYSICS, Vol. 15. The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Author: Dmitri Rabounski
Publisher: Infinite Study
ISBN:
Category : Science
Languages : en
Pages : 200
Book Description
Progress in Physics has been created for rapid publications on advanced studies in theoretical and experimental physics, including related themes from mathematics and astronomy.
Publisher: Infinite Study
ISBN:
Category : Science
Languages : en
Pages : 200
Book Description
Progress in Physics has been created for rapid publications on advanced studies in theoretical and experimental physics, including related themes from mathematics and astronomy.
International Journal of Mathematical Combinatorics, Volume 2, 2017
Author: Linfan Mao
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 142
Book Description
Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 142
Book Description
Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics.
Progress in Physics, vol. 2/2015
Author: Dmitri Rabounski
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 86
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 86
Book Description
The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics
MATHEMATICAL REALITY
Author: Linfan MAO
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 507
Book Description
A thing is complex, and hybrid with other things sometimes. Then, what is the reality of a thing? The reality of a thing is its state of existed, exists, or will exist in the world, independent on the understanding of human beings, which implies that the reality holds on by human beings maybe local or gradual, not the reality of a thing. Hence, to hold on the reality of things is the main objective of science in the history of human development.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 507
Book Description
A thing is complex, and hybrid with other things sometimes. Then, what is the reality of a thing? The reality of a thing is its state of existed, exists, or will exist in the world, independent on the understanding of human beings, which implies that the reality holds on by human beings maybe local or gradual, not the reality of a thing. Hence, to hold on the reality of things is the main objective of science in the history of human development.
Biological n-System with Global Stability
Author: Linfan MAO
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 28
Book Description
The main purpose of this paper is to characterize the biological behavior of such systems with global stability by a combinatorial approach, i.e., establish the relationship between solvable subsystems of a biological n-system with Eulerian subgraphs of la beling bi-digraph of → G L, characterize n-system with linear growth rate and the global stability on subgraph.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 28
Book Description
The main purpose of this paper is to characterize the biological behavior of such systems with global stability by a combinatorial approach, i.e., establish the relationship between solvable subsystems of a biological n-system with Eulerian subgraphs of la beling bi-digraph of → G L, characterize n-system with linear growth rate and the global stability on subgraph.
International Journal of Mathematical Combinatorics, Volume 4, 2017
Author: Linfan Mao
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 167
Book Description
Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 167
Book Description
Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics.