Author: Mark L. Latash
Publisher: Human Kinetics
ISBN: 9780736000277
Category : Education
Languages : en
Pages : 280
Book Description
Progress in Motor Control, Volume Two, features 12 chapters by internationally known researchers in the field of motor control. Comprehensive and up to date, the reference reflects the spirit of the great Nikolai Bernstein, one of the founders of the area now defined as motor control and a significant contributor to the structure-function controversy. Progress in Motor Control, Volume Two, preserves many of the features that made the first volume a state-of-the-art reference and presents these new features: -A reader-friendly design -More than 170 figures to illustrate the scientific ideas expressed -Many up-to-date references to help readers find the most current research in the field Less theoretical than the first volume, this book provides readers with valuable information on these subjects: -The direct relations of the motor function to neurophysiological and/or biomechanical structures -The role of the motor cortex and other brain structures in motor control and motor learning -The multidimensional and temporal regulation of limb mechanics by spinal circuits In this unique forum, prominent motor control scientists contribute varying viewpoints on different aspects of structure-function relations. These prominent scholars include scientists from the former Soviet Union who either knew Bernstein personally or worked closely with his students, biomechanists and neurophysiologists who focus on the role of particular body structures in the movement of production, and clinicians who analyze changes in movements with children and adults with neurological disorders. The book also gives an overview of the disagreement between Ivan Pavlov and Nikolai Bernstein, which is one of the most fascinating and controversial disagreements in the history of contemporary neurophysiology. Whether you're a researcher, or graduate or postdoctoral student, Progress in Motor Control, Volume Two, thoroughly summarizes the latest motor control issues, research, and theories, and it identifies problems in need of investigation.
Progress in Motor Control: Structure-function relations in voluntary movements
Author: Mark L. Latash
Publisher: Human Kinetics
ISBN: 9780736000277
Category : Education
Languages : en
Pages : 280
Book Description
Progress in Motor Control, Volume Two, features 12 chapters by internationally known researchers in the field of motor control. Comprehensive and up to date, the reference reflects the spirit of the great Nikolai Bernstein, one of the founders of the area now defined as motor control and a significant contributor to the structure-function controversy. Progress in Motor Control, Volume Two, preserves many of the features that made the first volume a state-of-the-art reference and presents these new features: -A reader-friendly design -More than 170 figures to illustrate the scientific ideas expressed -Many up-to-date references to help readers find the most current research in the field Less theoretical than the first volume, this book provides readers with valuable information on these subjects: -The direct relations of the motor function to neurophysiological and/or biomechanical structures -The role of the motor cortex and other brain structures in motor control and motor learning -The multidimensional and temporal regulation of limb mechanics by spinal circuits In this unique forum, prominent motor control scientists contribute varying viewpoints on different aspects of structure-function relations. These prominent scholars include scientists from the former Soviet Union who either knew Bernstein personally or worked closely with his students, biomechanists and neurophysiologists who focus on the role of particular body structures in the movement of production, and clinicians who analyze changes in movements with children and adults with neurological disorders. The book also gives an overview of the disagreement between Ivan Pavlov and Nikolai Bernstein, which is one of the most fascinating and controversial disagreements in the history of contemporary neurophysiology. Whether you're a researcher, or graduate or postdoctoral student, Progress in Motor Control, Volume Two, thoroughly summarizes the latest motor control issues, research, and theories, and it identifies problems in need of investigation.
Publisher: Human Kinetics
ISBN: 9780736000277
Category : Education
Languages : en
Pages : 280
Book Description
Progress in Motor Control, Volume Two, features 12 chapters by internationally known researchers in the field of motor control. Comprehensive and up to date, the reference reflects the spirit of the great Nikolai Bernstein, one of the founders of the area now defined as motor control and a significant contributor to the structure-function controversy. Progress in Motor Control, Volume Two, preserves many of the features that made the first volume a state-of-the-art reference and presents these new features: -A reader-friendly design -More than 170 figures to illustrate the scientific ideas expressed -Many up-to-date references to help readers find the most current research in the field Less theoretical than the first volume, this book provides readers with valuable information on these subjects: -The direct relations of the motor function to neurophysiological and/or biomechanical structures -The role of the motor cortex and other brain structures in motor control and motor learning -The multidimensional and temporal regulation of limb mechanics by spinal circuits In this unique forum, prominent motor control scientists contribute varying viewpoints on different aspects of structure-function relations. These prominent scholars include scientists from the former Soviet Union who either knew Bernstein personally or worked closely with his students, biomechanists and neurophysiologists who focus on the role of particular body structures in the movement of production, and clinicians who analyze changes in movements with children and adults with neurological disorders. The book also gives an overview of the disagreement between Ivan Pavlov and Nikolai Bernstein, which is one of the most fascinating and controversial disagreements in the history of contemporary neurophysiology. Whether you're a researcher, or graduate or postdoctoral student, Progress in Motor Control, Volume Two, thoroughly summarizes the latest motor control issues, research, and theories, and it identifies problems in need of investigation.
Progress in Motor Control
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Neurophysiological Basis of Movement
Author: Mark L. Latash
Publisher: Human Kinetics
ISBN: 9780736063678
Category : Medical
Languages : en
Pages : 444
Book Description
With eight new chapters and 130 pages of fresh material, this second edition covers a wide range of topics, including movement disorders and current theories of motor control and co-ordination.
Publisher: Human Kinetics
ISBN: 9780736063678
Category : Medical
Languages : en
Pages : 444
Book Description
With eight new chapters and 130 pages of fresh material, this second edition covers a wide range of topics, including movement disorders and current theories of motor control and co-ordination.
Progress in Motor Control
Author: Dagmar Sternad
Publisher: Springer Science & Business Media
ISBN: 038777064X
Category : Medical
Languages : en
Pages : 727
Book Description
This ground-breaking book brings together researchers from a wide range of disciplines to discuss the control and coordination of processes involved in perceptually guided actions. The research area of motor control has become an increasingly multidisciplinary undertaking. Understanding the acquisition and performance of voluntary movements in biological and artificial systems requires the integration of knowledge from a variety of disciplines from neurophysiology to biomechanics.
Publisher: Springer Science & Business Media
ISBN: 038777064X
Category : Medical
Languages : en
Pages : 727
Book Description
This ground-breaking book brings together researchers from a wide range of disciplines to discuss the control and coordination of processes involved in perceptually guided actions. The research area of motor control has become an increasingly multidisciplinary undertaking. Understanding the acquisition and performance of voluntary movements in biological and artificial systems requires the integration of knowledge from a variety of disciplines from neurophysiology to biomechanics.
Fundamentals of Motor Control
Author: Mark L. Latash
Publisher: Academic Press
ISBN: 0123914124
Category : Medical
Languages : en
Pages : 366
Book Description
Motor control is a relatively young field of research exploring how the nervous system produces purposeful, coordinated movements in its interaction with the body and the environment through conscious and unsconscious thought. Many books purporting to cover motor control have veered off course to examine biomechanics and physiology rather than actual control, leaving a gap in the literature. This book covers all the major perspectives in motor control, with a balanced approach. There are chapters explicitly dedicated to control theory, to dynamical systems, to biomechanics, to different behaviors, and to motor learning, including case studies. - Reviews current research in motor control - Contains balanced perspectives among neuroscience, psychology, physics and biomechanics - Highlights controversies in the field - Discusses neurophysiology, control theory, biomechanics, and dynamical systems under one cover - Links principles of motor control to everyday behaviors - Includes case studies delving into topics in more detail
Publisher: Academic Press
ISBN: 0123914124
Category : Medical
Languages : en
Pages : 366
Book Description
Motor control is a relatively young field of research exploring how the nervous system produces purposeful, coordinated movements in its interaction with the body and the environment through conscious and unsconscious thought. Many books purporting to cover motor control have veered off course to examine biomechanics and physiology rather than actual control, leaving a gap in the literature. This book covers all the major perspectives in motor control, with a balanced approach. There are chapters explicitly dedicated to control theory, to dynamical systems, to biomechanics, to different behaviors, and to motor learning, including case studies. - Reviews current research in motor control - Contains balanced perspectives among neuroscience, psychology, physics and biomechanics - Highlights controversies in the field - Discusses neurophysiology, control theory, biomechanics, and dynamical systems under one cover - Links principles of motor control to everyday behaviors - Includes case studies delving into topics in more detail
Synergy
Author: Mark L. Latash
Publisher: Oxford University Press
ISBN: 0195333160
Category : Medical
Languages : en
Pages : 429
Book Description
Synergy discusses a general problem in biology: The lack of an adequate language for formulating biologically specific problems. Written for an inquisitive reader who is not necessarily a professional in the area of movement studies, this book describes the recent progress in the control and coordination of human movement.The book begins with a brief history of movement studies and reviews the current central controversies in the area of control of movements with an emphasis on the equilibrium-point hypothesis. An operational definition of synergy is introduced and a method of analysis of synergies is described based on the uncontrolled manifold hypothesis. Further this method is used to characterize synergies in a variety of tasks including such common motor tasks as standing, pointing, reaching, standing-up, and manipulation of hand-held objects. Applications of this method to movements by persons with neurological disorders, persons with atypical development and healthy elderly persons are illustrated, as well as changes in motor synergies with practice. Possible neurophysiological mechanisms of synergies are also discussed with the focus on such conspicuous structures as the spinal cord, the cerebellum, the basal ganglia, and the cortex of the large hemispheres. A variety of models are discussed based on different computational and neurophysiological principles. Possible applications of the introduced definition of synergies to other areas such as perception and language are discussed.
Publisher: Oxford University Press
ISBN: 0195333160
Category : Medical
Languages : en
Pages : 429
Book Description
Synergy discusses a general problem in biology: The lack of an adequate language for formulating biologically specific problems. Written for an inquisitive reader who is not necessarily a professional in the area of movement studies, this book describes the recent progress in the control and coordination of human movement.The book begins with a brief history of movement studies and reviews the current central controversies in the area of control of movements with an emphasis on the equilibrium-point hypothesis. An operational definition of synergy is introduced and a method of analysis of synergies is described based on the uncontrolled manifold hypothesis. Further this method is used to characterize synergies in a variety of tasks including such common motor tasks as standing, pointing, reaching, standing-up, and manipulation of hand-held objects. Applications of this method to movements by persons with neurological disorders, persons with atypical development and healthy elderly persons are illustrated, as well as changes in motor synergies with practice. Possible neurophysiological mechanisms of synergies are also discussed with the focus on such conspicuous structures as the spinal cord, the cerebellum, the basal ganglia, and the cortex of the large hemispheres. A variety of models are discussed based on different computational and neurophysiological principles. Possible applications of the introduced definition of synergies to other areas such as perception and language are discussed.
Human-Aware Robotics: Modeling Human Motor Skills for the Design, Planning and Control of a New Generation of Robotic Devices
Author: Giuseppe Averta
Publisher: Springer Nature
ISBN: 3030925218
Category : Technology & Engineering
Languages : en
Pages : 284
Book Description
This book moves from a thorough investigation of human capabilities during movements and interactions with objects and environment and translates those principles into the design planning and control of innovative mechatronic systems, providing significant advancements in the fields of human–robot interaction, autonomous robots, prosthetics and assistive devices. The work presented in this monograph is characterized by a significant paradigmatic shift with respect to typical approaches, as it always place the human at the center of the technology developed, and the human represents the starting point and the actual beneficiary of the developed solutions. The content of this book is targeted to robotics and neuroscience enthusiasts, researchers and makers, students and simple lovers of the matter.
Publisher: Springer Nature
ISBN: 3030925218
Category : Technology & Engineering
Languages : en
Pages : 284
Book Description
This book moves from a thorough investigation of human capabilities during movements and interactions with objects and environment and translates those principles into the design planning and control of innovative mechatronic systems, providing significant advancements in the fields of human–robot interaction, autonomous robots, prosthetics and assistive devices. The work presented in this monograph is characterized by a significant paradigmatic shift with respect to typical approaches, as it always place the human at the center of the technology developed, and the human represents the starting point and the actual beneficiary of the developed solutions. The content of this book is targeted to robotics and neuroscience enthusiasts, researchers and makers, students and simple lovers of the matter.
Motor Control and Learning
Author: Markus Latash
Publisher: Springer Science & Business Media
ISBN: 0387282874
Category : Medical
Languages : en
Pages : 166
Book Description
This book is the first to view the effects of development, aging, and practice on the control of human voluntary movement from a contemporary context. Emphasis is on the links between progress in basic motor control research and applied areas such as motor disorders and motor rehabilitation. Relevant to both professionals in the areas of motor control, movement disorders, and motor rehabilitation, and to students starting their careers in one of these actively developed areas.
Publisher: Springer Science & Business Media
ISBN: 0387282874
Category : Medical
Languages : en
Pages : 166
Book Description
This book is the first to view the effects of development, aging, and practice on the control of human voluntary movement from a contemporary context. Emphasis is on the links between progress in basic motor control research and applied areas such as motor disorders and motor rehabilitation. Relevant to both professionals in the areas of motor control, movement disorders, and motor rehabilitation, and to students starting their careers in one of these actively developed areas.
Neural and Computational Modeling of Movement Control
Author: Ning Lan
Publisher: Frontiers Media SA
ISBN: 2889451305
Category :
Languages : en
Pages : 180
Book Description
In the study of sensorimotor systems, an important research goal has been to understand the way neural networks in the spinal cord and brain interact to control voluntary movement. Computational modeling has provided insight into the interaction between centrally generated commands, proprioceptive feedback signals and the biomechanical responses of the moving body. Research in this field is also driven by the need to improve and optimize rehabilitation after nervous system injury and to devise biomimetic methods of control in robotic devices. This research topic is focused on efforts dedicated to identify and model the neuromechanical control of movement. Neural networks in the brain and spinal cord are known to generate patterned activity that mediates coordinated activation of multiple muscles in both rhythmic and discrete movements, e.g. locomotion and reaching. Commands descending from the higher centres in the CNS modulate the activity of spinal networks, which control movement on the basis of sensory feedback of various types, including that from proprioceptive afferents. The computational models will continue to shed light on the central strategies and mechanisms of sensorimotor control and learning. This research topic demonstrated that computational modeling is playing a more and more prominent role in the studies of postural and movement control. With increasing ability to gather data from all levels of the neuromechanical sensorimotor systems, there is a compelling need for novel, creative modeling of new and existing data sets, because the more systematic means to extract knowledge and insights about neural computations of sensorimotor systems from these data is through computational modeling. While models should be based on experimental data and validated with experimental evidence, they should also be flexible to provide a conceptual framework for unifying diverse data sets, to generate new insights of neural mechanisms, to integrate new data sets into the general framework, to validate or refute hypotheses and to suggest new testable hypotheses for future experimental investigation. It is thus expected that neural and computational modeling of the sensorimotor system should create new opportunities for experimentalists and modelers to collaborate in a joint endeavor to advance our understanding of the neural mechanisms for postural and movement control. The editors would like to thank Professor Arthur Prochazka, who helped initially to set up this research topic, and all authors who contributed their articles to this research topic. Our appreciation also goes to the reviewers, who volunteered their time and effort to help achieve the goal of this research topic. We would also like to thank the staff members of editorial office of Frontiers in Computational Neuroscience for their expertise in the process of manuscript handling, publishing, and in bringing this ebook to the readers. The support from the Editor-in-Chief, Dr. Misha Tsodyks and Dr. Si Wu is crucial for this research topic to come to a successful conclusion. We are indebted to Dr. Si Li and Ms. Ting Xu, whose assistant is important for this ebook to become a reality. Finally, this work is supported in part by grants to Dr. Ning Lan from the Ministry of Science and Technology of China (2011CB013304), the Natural Science Foundation of China (No. 81271684, No. 61361160415, No. 81630050), and the Interdisciplinary Research Grant cross Engineering and Medicine by Shanghai Jiao Tong University (YG20148D09). Dr. Vincent Cheung is supported by startup funds from the Faculty of Medicine of The Chinese University of Hong Kong. Guest Associate Editors Ning Lan, Vincent Cheung, and Simon Gandevia
Publisher: Frontiers Media SA
ISBN: 2889451305
Category :
Languages : en
Pages : 180
Book Description
In the study of sensorimotor systems, an important research goal has been to understand the way neural networks in the spinal cord and brain interact to control voluntary movement. Computational modeling has provided insight into the interaction between centrally generated commands, proprioceptive feedback signals and the biomechanical responses of the moving body. Research in this field is also driven by the need to improve and optimize rehabilitation after nervous system injury and to devise biomimetic methods of control in robotic devices. This research topic is focused on efforts dedicated to identify and model the neuromechanical control of movement. Neural networks in the brain and spinal cord are known to generate patterned activity that mediates coordinated activation of multiple muscles in both rhythmic and discrete movements, e.g. locomotion and reaching. Commands descending from the higher centres in the CNS modulate the activity of spinal networks, which control movement on the basis of sensory feedback of various types, including that from proprioceptive afferents. The computational models will continue to shed light on the central strategies and mechanisms of sensorimotor control and learning. This research topic demonstrated that computational modeling is playing a more and more prominent role in the studies of postural and movement control. With increasing ability to gather data from all levels of the neuromechanical sensorimotor systems, there is a compelling need for novel, creative modeling of new and existing data sets, because the more systematic means to extract knowledge and insights about neural computations of sensorimotor systems from these data is through computational modeling. While models should be based on experimental data and validated with experimental evidence, they should also be flexible to provide a conceptual framework for unifying diverse data sets, to generate new insights of neural mechanisms, to integrate new data sets into the general framework, to validate or refute hypotheses and to suggest new testable hypotheses for future experimental investigation. It is thus expected that neural and computational modeling of the sensorimotor system should create new opportunities for experimentalists and modelers to collaborate in a joint endeavor to advance our understanding of the neural mechanisms for postural and movement control. The editors would like to thank Professor Arthur Prochazka, who helped initially to set up this research topic, and all authors who contributed their articles to this research topic. Our appreciation also goes to the reviewers, who volunteered their time and effort to help achieve the goal of this research topic. We would also like to thank the staff members of editorial office of Frontiers in Computational Neuroscience for their expertise in the process of manuscript handling, publishing, and in bringing this ebook to the readers. The support from the Editor-in-Chief, Dr. Misha Tsodyks and Dr. Si Wu is crucial for this research topic to come to a successful conclusion. We are indebted to Dr. Si Li and Ms. Ting Xu, whose assistant is important for this ebook to become a reality. Finally, this work is supported in part by grants to Dr. Ning Lan from the Ministry of Science and Technology of China (2011CB013304), the Natural Science Foundation of China (No. 81271684, No. 61361160415, No. 81630050), and the Interdisciplinary Research Grant cross Engineering and Medicine by Shanghai Jiao Tong University (YG20148D09). Dr. Vincent Cheung is supported by startup funds from the Faculty of Medicine of The Chinese University of Hong Kong. Guest Associate Editors Ning Lan, Vincent Cheung, and Simon Gandevia
Progress in Motor Control
Author: Jozsef Laczko
Publisher: Springer
ISBN: 3319473131
Category : Medical
Languages : en
Pages : 391
Book Description
This single volume brings together both theoretical developments in the field of motor control and their translation into such fields as movement disorders, motor rehabilitation, robotics, prosthetics, brain-machine interface, and skill learning. Motor control has established itself as an area of scientific research characterized by a multi-disciplinary approach. Its goal is to promote cooperation and mutual understanding among researchers addressing different aspects of the complex phenomenon of motor coordination. Topics covered include recent theoretical advances from various fields, the neurophysiology of complex natural movements, the equilibrium-point hypothesis, motor learning of skilled behaviors, the effects of age, brain injury, or systemic disorders such as Parkinson's Disease, and brain-computer interfaces. The chapter ‘Encoding Temporal Features of Skilled Movements—What, Whether and How?’ is available open access under a CC BY 4.0 license via link.springer.com.
Publisher: Springer
ISBN: 3319473131
Category : Medical
Languages : en
Pages : 391
Book Description
This single volume brings together both theoretical developments in the field of motor control and their translation into such fields as movement disorders, motor rehabilitation, robotics, prosthetics, brain-machine interface, and skill learning. Motor control has established itself as an area of scientific research characterized by a multi-disciplinary approach. Its goal is to promote cooperation and mutual understanding among researchers addressing different aspects of the complex phenomenon of motor coordination. Topics covered include recent theoretical advances from various fields, the neurophysiology of complex natural movements, the equilibrium-point hypothesis, motor learning of skilled behaviors, the effects of age, brain injury, or systemic disorders such as Parkinson's Disease, and brain-computer interfaces. The chapter ‘Encoding Temporal Features of Skilled Movements—What, Whether and How?’ is available open access under a CC BY 4.0 license via link.springer.com.