Author: Zhen Fang
Publisher: Springer
ISBN: 9401773300
Category : Science
Languages : en
Pages : 375
Book Description
This book provides state-of-the-art reviews, current research and prospects of producing hydrogen using bio, thermal and electrochemical methods and covers hydrogen separation, storage and applications. Hydrogen produced from biomass offers a clean and renewable energy source and a promising energy carrier that will supplement or replace fossil fuels in the future. The book is intended as a reference work for researchers, academics and industrialists working in the chemical and biological sciences, engineering, renewable resources and sustainability. Readers will find a wealth of information in the text that is both useful for the practical development of hydrogen systems and essential for assessing hydrogen production by bioelectrochemical, electrochemical, fermentation, gasification, pyrolysis and solar means, applied to many forms of biomass. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Production of Hydrogen from Renewable Resources
Author: Zhen Fang
Publisher: Springer
ISBN: 9401773300
Category : Science
Languages : en
Pages : 375
Book Description
This book provides state-of-the-art reviews, current research and prospects of producing hydrogen using bio, thermal and electrochemical methods and covers hydrogen separation, storage and applications. Hydrogen produced from biomass offers a clean and renewable energy source and a promising energy carrier that will supplement or replace fossil fuels in the future. The book is intended as a reference work for researchers, academics and industrialists working in the chemical and biological sciences, engineering, renewable resources and sustainability. Readers will find a wealth of information in the text that is both useful for the practical development of hydrogen systems and essential for assessing hydrogen production by bioelectrochemical, electrochemical, fermentation, gasification, pyrolysis and solar means, applied to many forms of biomass. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Publisher: Springer
ISBN: 9401773300
Category : Science
Languages : en
Pages : 375
Book Description
This book provides state-of-the-art reviews, current research and prospects of producing hydrogen using bio, thermal and electrochemical methods and covers hydrogen separation, storage and applications. Hydrogen produced from biomass offers a clean and renewable energy source and a promising energy carrier that will supplement or replace fossil fuels in the future. The book is intended as a reference work for researchers, academics and industrialists working in the chemical and biological sciences, engineering, renewable resources and sustainability. Readers will find a wealth of information in the text that is both useful for the practical development of hydrogen systems and essential for assessing hydrogen production by bioelectrochemical, electrochemical, fermentation, gasification, pyrolysis and solar means, applied to many forms of biomass. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Renewable Hydrogen Production
Author: Ibrahim Dincer
Publisher: Elsevier
ISBN: 0323851894
Category : Science
Languages : en
Pages : 384
Book Description
Renewable Hydrogen Production provides a comprehensive analysis of renewable energy-based hydrogen production. Through simulation analysis and experimental investigations, the book provides fundamentals, compares existing hydrogen production applications, discusses novel technologies, and offers insights into the future directions of this rapidly evolving industry. This all-in-one resource on how to produce clean hydrogen production to enhance energy efficiency and support sustainable development will appeal to a wide variety of industries and professionals. - Addresses the production of clean hydrogen from the major sources of renewable energy, including wind, solar, geothermal, hydro, biomass and marine energy - Presents information from simulations and experimental analyses - Offers insights into the future of renewable hydrogen production
Publisher: Elsevier
ISBN: 0323851894
Category : Science
Languages : en
Pages : 384
Book Description
Renewable Hydrogen Production provides a comprehensive analysis of renewable energy-based hydrogen production. Through simulation analysis and experimental investigations, the book provides fundamentals, compares existing hydrogen production applications, discusses novel technologies, and offers insights into the future directions of this rapidly evolving industry. This all-in-one resource on how to produce clean hydrogen production to enhance energy efficiency and support sustainable development will appeal to a wide variety of industries and professionals. - Addresses the production of clean hydrogen from the major sources of renewable energy, including wind, solar, geothermal, hydro, biomass and marine energy - Presents information from simulations and experimental analyses - Offers insights into the future of renewable hydrogen production
Hydrogen Fuel Cell Technology for Stationary Applications
Author: Badea, Gheorghe
Publisher: IGI Global
ISBN: 1799849465
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Unconventional energy sources have gained and will continue to gain an increasing share of energy systems around the world. Today, hydrogen is recognized as a non-polluting energy carrier because it does not contribute to global warming if it is produced from renewable sources. Hydrogen is already part of today's chemical industry, but as an energy source, its rare advantages can only be obtained with the help of technologies. Currently, the fuel cell is considered the cleanest sustainable energy. With the development of fuel cells, hydrogen-based energy generation becomes a reality. Hydrogen Fuel Cell Technology for Stationary Applications is an essential publication that focuses on the advantages of hydrogen as a primary energy center and addresses its use in the sustainable future of stationary applications. While highlighting a broad range of topics including cost expectations, production methods, and social impact, this publication explores all aspects of the implementation and dissemination of fuel cell technology in the hope of establishing a sustainable marketplace for it. This book is ideally designed for fuel cell manufacturers, architects, electrical engineers, civil engineers, environmental engineers, advocates, manufacturers, mechanics, researchers, academicians, and students.
Publisher: IGI Global
ISBN: 1799849465
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Unconventional energy sources have gained and will continue to gain an increasing share of energy systems around the world. Today, hydrogen is recognized as a non-polluting energy carrier because it does not contribute to global warming if it is produced from renewable sources. Hydrogen is already part of today's chemical industry, but as an energy source, its rare advantages can only be obtained with the help of technologies. Currently, the fuel cell is considered the cleanest sustainable energy. With the development of fuel cells, hydrogen-based energy generation becomes a reality. Hydrogen Fuel Cell Technology for Stationary Applications is an essential publication that focuses on the advantages of hydrogen as a primary energy center and addresses its use in the sustainable future of stationary applications. While highlighting a broad range of topics including cost expectations, production methods, and social impact, this publication explores all aspects of the implementation and dissemination of fuel cell technology in the hope of establishing a sustainable marketplace for it. This book is ideally designed for fuel cell manufacturers, architects, electrical engineers, civil engineers, environmental engineers, advocates, manufacturers, mechanics, researchers, academicians, and students.
Advances in Hydrogen Production, Storage and Distribution
Author: Adolfo Iulianelli
Publisher: Elsevier
ISBN: 0857097733
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods
Publisher: Elsevier
ISBN: 0857097733
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
Advances in Hydrogen Production, Storage and Distribution reviews recent developments in this key component of the emerging "hydrogen economy," an energy infrastructure based on hydrogen. Since hydrogen can be produced without using fossil fuels, a move to such an economy has the potential to reduce greenhouse gas emissions and improve energy security. However, such a move also requires the advanced production, storage and usage techniques discussed in this book. Part one introduces the fundamentals of hydrogen production, storage, and distribution, including an overview of the development of the necessary infrastructure, an analysis of the potential environmental benefits, and a review of some important hydrogen production technologies in conventional, bio-based, and nuclear power plants. Part two focuses on hydrogen production from renewable resources, and includes chapters outlining the production of hydrogen through water electrolysis, photocatalysis, and bioengineered algae. Finally, part three covers hydrogen production using inorganic membrane reactors, the storage of hydrogen, fuel cell technology, and the potential of hydrogen as a fuel for transportation. Advances in Hydrogen Production, Storage and Distribution provides a detailed overview of the components and challenges of a hydrogen economy. This book is an invaluable resource for research and development professionals in the energy industry, as well as academics with an interest in this important subject. - Reviews developments and research in this dynamic area - Discusses the challenges of creating an infrastructure to store and distribute hydrogen - Reviews the production of hydrogen using electrolysis and photo-catalytic methods
Hydrogen Production Technologies
Author: Mehmet Sankir
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Solar Hydrogen Production
Author: Francesco Calise
Publisher: Academic Press
ISBN: 0128148543
Category : Science
Languages : en
Pages : 586
Book Description
Solar Hydrogen Production: Processes, Systems and Technologies presents the most recent developments in solar-driven hydrogen generation methods. The book covers different hydrogen production routes, from renewable sources, to solar harvesting technologies. Sections focus on solar energy, presenting the main thermal and electrical technologies suitable for possible integration into solar-based hydrogen production systems and present a thorough examination of solar hydrogen technologies, ranging from solar-driven water electrolysis and solar thermal methods, to photo-catalytic and biological processes. All hydrogen-based technologies are covered, including data regarding the state-of-the art of each process in terms of costs, efficiency, measured parameters, experimental analyses, and demonstration projects. In the last part of the book, the role of hydrogen in the integration of renewable sources in electric grids, transportation sector, and end-user applications is assessed, considering their current status and future perspectives. The book includes performance data, tables, models and references to available standards. It is thus a key-resource for engineering researchers and scientists, in both academic and industrial contexts, involved in designing, planning and developing solar hydrogen systems. - Offers a comprehensive overview of conventional and advanced solar hydrogen technologies, including simulation models, cost figures, R&D projects, demonstration projects, test standards, and safety and handling issues - Encompasses, in a single volume, information on solar energy and hydrogen systems - Includes detailed economic data on each technology for feasibility assessment of different systems
Publisher: Academic Press
ISBN: 0128148543
Category : Science
Languages : en
Pages : 586
Book Description
Solar Hydrogen Production: Processes, Systems and Technologies presents the most recent developments in solar-driven hydrogen generation methods. The book covers different hydrogen production routes, from renewable sources, to solar harvesting technologies. Sections focus on solar energy, presenting the main thermal and electrical technologies suitable for possible integration into solar-based hydrogen production systems and present a thorough examination of solar hydrogen technologies, ranging from solar-driven water electrolysis and solar thermal methods, to photo-catalytic and biological processes. All hydrogen-based technologies are covered, including data regarding the state-of-the art of each process in terms of costs, efficiency, measured parameters, experimental analyses, and demonstration projects. In the last part of the book, the role of hydrogen in the integration of renewable sources in electric grids, transportation sector, and end-user applications is assessed, considering their current status and future perspectives. The book includes performance data, tables, models and references to available standards. It is thus a key-resource for engineering researchers and scientists, in both academic and industrial contexts, involved in designing, planning and developing solar hydrogen systems. - Offers a comprehensive overview of conventional and advanced solar hydrogen technologies, including simulation models, cost figures, R&D projects, demonstration projects, test standards, and safety and handling issues - Encompasses, in a single volume, information on solar energy and hydrogen systems - Includes detailed economic data on each technology for feasibility assessment of different systems
The Hydrogen Economy
Author: National Academy of Engineering
Publisher: National Academies Press
ISBN: 0309091632
Category : Science
Languages : en
Pages : 257
Book Description
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Publisher: National Academies Press
ISBN: 0309091632
Category : Science
Languages : en
Pages : 257
Book Description
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Solar Hydrogen Generation
Author: Krishnan Rajeshwar
Publisher: Springer Science & Business Media
ISBN: 0387728104
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Given the backdrop of intense interest and widespread discussion on the prospects of a hydrogen energy economy, this book aims to provide an authoritative and up-to-date scientific account of hydrogen generation using solar energy and renewable sources such as water. While the technological and economic aspects of solar hydrogen generation are evolving, the scientific principles underlying various solar-assisted water splitting schemes already have a firm footing. This book aims to expose a broad-based audience to these principles. This book spans the disciplines of solar energy conversion, electrochemistry, photochemistry, photoelectrochemistry, materials chemistry, device physics/engineering, and biology.
Publisher: Springer Science & Business Media
ISBN: 0387728104
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Given the backdrop of intense interest and widespread discussion on the prospects of a hydrogen energy economy, this book aims to provide an authoritative and up-to-date scientific account of hydrogen generation using solar energy and renewable sources such as water. While the technological and economic aspects of solar hydrogen generation are evolving, the scientific principles underlying various solar-assisted water splitting schemes already have a firm footing. This book aims to expose a broad-based audience to these principles. This book spans the disciplines of solar energy conversion, electrochemistry, photochemistry, photoelectrochemistry, materials chemistry, device physics/engineering, and biology.
Hydrogen Fuel
Author: Ram B. Gupta
Publisher: CRC Press
ISBN: 1420045776
Category : Science
Languages : en
Pages : 626
Book Description
From Methane to Hydrogen-Making the Switch to a Cleaner Fuel Source The world's overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next grea
Publisher: CRC Press
ISBN: 1420045776
Category : Science
Languages : en
Pages : 626
Book Description
From Methane to Hydrogen-Making the Switch to a Cleaner Fuel Source The world's overdependence on fossil fuels has created environmental problems, such as air pollution and global warming, as well as political and economic unrest. With water as its only by-product and its availability in all parts of the world, hydrogen promises to be the next grea
Sustainable Hydrogen Production Processes
Author: José Luz Silveira
Publisher: Springer
ISBN: 3319416162
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This work presents a comprehensive investigation of the most significant renewable hydrogen production processes. Technical, economic and ecological studies are described for the processes of steam reforming of ethanol, natural gas and biogas; water electrolysis with energy from renewable sources (wind power, photovoltaic and hydroelectric), and hydrogen production using algae. Aimed at mechanical and chemical engineering graduate students and researchers involved in environmental sciences, sustainable energy and bioenergy research, this book introduces readers to the latest developments in the field and provides essential reference material for future research. The book first presents a comprehensive literature review of the processes studied. Subsequently, it provides a technical report on assessing the energetic efficiency for each hydrogen production process, as well as an economic study of the respective hydrogen production costs. Lastly, the ecological efficiency of each process is addressed. Over the past few decades, the UNESP’s Group of Optimization of Energetic Systems, headed by Professor José Luz Silveira, has been pursuing research in the field of renewable energy generation. A major part of the group’s research focuses on the production of hydrogen as a fuel and its important contribution to mitigating the environmental impacts caused by pollutant emissions.
Publisher: Springer
ISBN: 3319416162
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This work presents a comprehensive investigation of the most significant renewable hydrogen production processes. Technical, economic and ecological studies are described for the processes of steam reforming of ethanol, natural gas and biogas; water electrolysis with energy from renewable sources (wind power, photovoltaic and hydroelectric), and hydrogen production using algae. Aimed at mechanical and chemical engineering graduate students and researchers involved in environmental sciences, sustainable energy and bioenergy research, this book introduces readers to the latest developments in the field and provides essential reference material for future research. The book first presents a comprehensive literature review of the processes studied. Subsequently, it provides a technical report on assessing the energetic efficiency for each hydrogen production process, as well as an economic study of the respective hydrogen production costs. Lastly, the ecological efficiency of each process is addressed. Over the past few decades, the UNESP’s Group of Optimization of Energetic Systems, headed by Professor José Luz Silveira, has been pursuing research in the field of renewable energy generation. A major part of the group’s research focuses on the production of hydrogen as a fuel and its important contribution to mitigating the environmental impacts caused by pollutant emissions.