Author: William Gasarch
Publisher: World Scientific
ISBN: 9813279745
Category : Young Adult Nonfiction
Languages : en
Pages : 285
Book Description
'Points, questions, stories, and occasional rants introduce the 24 chapters of this engaging volume. With a focus on mathematics and peppered with a scattering of computer science settings, the entries range from lightly humorous to curiously thought-provoking. Each chapter includes sections and sub-sections that illustrate and supplement the point at hand. Most topics are self-contained within each chapter, and a solid high school mathematics background is all that is needed to enjoy the discussions. There certainly is much to enjoy here.'CHOICEEver notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)?Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques.This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
Problems With A Point: Exploring Math And Computer Science
Author: William Gasarch
Publisher: World Scientific
ISBN: 9813279745
Category : Young Adult Nonfiction
Languages : en
Pages : 285
Book Description
'Points, questions, stories, and occasional rants introduce the 24 chapters of this engaging volume. With a focus on mathematics and peppered with a scattering of computer science settings, the entries range from lightly humorous to curiously thought-provoking. Each chapter includes sections and sub-sections that illustrate and supplement the point at hand. Most topics are self-contained within each chapter, and a solid high school mathematics background is all that is needed to enjoy the discussions. There certainly is much to enjoy here.'CHOICEEver notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)?Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques.This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
Publisher: World Scientific
ISBN: 9813279745
Category : Young Adult Nonfiction
Languages : en
Pages : 285
Book Description
'Points, questions, stories, and occasional rants introduce the 24 chapters of this engaging volume. With a focus on mathematics and peppered with a scattering of computer science settings, the entries range from lightly humorous to curiously thought-provoking. Each chapter includes sections and sub-sections that illustrate and supplement the point at hand. Most topics are self-contained within each chapter, and a solid high school mathematics background is all that is needed to enjoy the discussions. There certainly is much to enjoy here.'CHOICEEver notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)?Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques.This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
Problems with a Point
Author: William I. Gasarch
Publisher:
ISBN: 9789813279735
Category : Computer science
Languages : en
Pages : 285
Book Description
"Ever notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)? Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques. This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner."--
Publisher:
ISBN: 9789813279735
Category : Computer science
Languages : en
Pages : 285
Book Description
"Ever notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)? Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques. This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner."--
Problems with a Point
Author: William I. Gasarch
Publisher: World Scientific Publishing Company
ISBN: 9789813279971
Category : Computer science
Languages : en
Pages : 0
Book Description
Ever notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)? Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques. This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
Publisher: World Scientific Publishing Company
ISBN: 9789813279971
Category : Computer science
Languages : en
Pages : 0
Book Description
Ever notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)? Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques. This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
What Can Be Computed?
Author: John MacCormick
Publisher: Princeton University Press
ISBN: 0691170665
Category : Computers
Languages : en
Pages : 404
Book Description
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
Publisher: Princeton University Press
ISBN: 0691170665
Category : Computers
Languages : en
Pages : 404
Book Description
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
A Programmer's Introduction to Mathematics
Author: Jeremy Kun
Publisher:
ISBN:
Category :
Languages : en
Pages : 400
Book Description
A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.
Publisher:
ISBN:
Category :
Languages : en
Pages : 400
Book Description
A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.
Computational Complexity
Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
The Outer Limits of Reason
Author: Noson S. Yanofsky
Publisher: MIT Press
ISBN: 026252984X
Category : Science
Languages : en
Pages : 419
Book Description
This exploration of the scientific limits of knowledge challenges our deep-seated beliefs about our universe, our rationality, and ourselves. “A must-read for anyone studying information science.” —Publishers Weekly, starred review Many books explain what is known about the universe. This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own intuitions about the world—including our ideas about space, time, and motion, and the complex relationship between the knower and the known. Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve: • perfectly formed English sentences that make no sense • different levels of infinity • the bizarre world of the quantum • the relevance of relativity theory • the causes of chaos theory • math problems that cannot be solved by normal means • statements that are true but cannot be proven Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
Publisher: MIT Press
ISBN: 026252984X
Category : Science
Languages : en
Pages : 419
Book Description
This exploration of the scientific limits of knowledge challenges our deep-seated beliefs about our universe, our rationality, and ourselves. “A must-read for anyone studying information science.” —Publishers Weekly, starred review Many books explain what is known about the universe. This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own intuitions about the world—including our ideas about space, time, and motion, and the complex relationship between the knower and the known. Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve: • perfectly formed English sentences that make no sense • different levels of infinity • the bizarre world of the quantum • the relevance of relativity theory • the causes of chaos theory • math problems that cannot be solved by normal means • statements that are true but cannot be proven Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
Discrete Mathematics for Computer Science
Author: Gary Haggard
Publisher: Cengage Learning
ISBN: 9780534495015
Category : Computers
Languages : en
Pages : 0
Book Description
Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career.
Publisher: Cengage Learning
ISBN: 9780534495015
Category : Computers
Languages : en
Pages : 0
Book Description
Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career.
Mathematical Muffin Morsels: Nobody Wants A Small Piece
Author: William Gasarch
Publisher: World Scientific
ISBN: 9811215197
Category : Mathematics
Languages : en
Pages : 227
Book Description
Suppose you have five muffins that you want to divide and give to Alice, Bob, and Carol. You want each of them to get 5/3. You could cut each muffin into 1/3-1/3-1/3 and give each student five 1/3-sized pieces. But Alice objects! She has large hands! She wants everyone to have pieces larger than 1/3.Is there a way to divide five muffins for three students so that everyone gets 5/3, and all pieces are larger than 1/3? Spoiler alert: Yes! In fact, there is a division where the smallest piece is 5/12. Is there a better division? Spoiler alert: No.In this book we consider THE MUFFIN PROBLEM: what is the best way to divide up m muffins for s students so that everyone gets m/s muffins, with the smallest pieces maximized. We look at both procedures for the problem and proofs that these procedures are optimal.This problem takes us through much mathematics of interest, for example, combinatorics and optimization theory. However, the math is elementary enough for an advanced high school student.
Publisher: World Scientific
ISBN: 9811215197
Category : Mathematics
Languages : en
Pages : 227
Book Description
Suppose you have five muffins that you want to divide and give to Alice, Bob, and Carol. You want each of them to get 5/3. You could cut each muffin into 1/3-1/3-1/3 and give each student five 1/3-sized pieces. But Alice objects! She has large hands! She wants everyone to have pieces larger than 1/3.Is there a way to divide five muffins for three students so that everyone gets 5/3, and all pieces are larger than 1/3? Spoiler alert: Yes! In fact, there is a division where the smallest piece is 5/12. Is there a better division? Spoiler alert: No.In this book we consider THE MUFFIN PROBLEM: what is the best way to divide up m muffins for s students so that everyone gets m/s muffins, with the smallest pieces maximized. We look at both procedures for the problem and proofs that these procedures are optimal.This problem takes us through much mathematics of interest, for example, combinatorics and optimization theory. However, the math is elementary enough for an advanced high school student.