Author: Andrés Illanes
Publisher: John Wiley & Sons
ISBN: 1118341775
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
Enzyme biocatalysis is a fast-growing area in process biotechnology that has expanded from the traditional fields of foods, detergents, and leather applications to more sophisticated uses in the pharmaceutical and fine-chemicals sectors and environmental management. Conventional applications of industrial enzymes are expected to grow, with major opportunities in the detergent and animal feed sectors, and new uses in biofuel production and human and animal therapy. In order to design more efficient enzyme reactors and evaluate performance properly, sound mathematical expressions must be developed which consider enzyme kinetics, material balances, and eventual mass transfer limitations. With a focus on problem solving, each chapter provides abridged coverage of the subject, followed by a number of solved problems illustrating resolution procedures and the main concepts underlying them, plus supplementary questions and answers. Based on more than 50 years of teaching experience, Problem Solving in Enzyme Biocatalysis is a unique reference for students of chemical and biochemical engineering, as well as biochemists and chemists dealing with bioprocesses. Contains: Enzyme properties and applications; enzyme kinetics; enzyme reactor design and operation 146 worked problems and solutions in enzyme biocatalysis.
Problem Solving in Enzyme Biocatalysis
Author: Andrés Illanes
Publisher: John Wiley & Sons
ISBN: 1118341775
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
Enzyme biocatalysis is a fast-growing area in process biotechnology that has expanded from the traditional fields of foods, detergents, and leather applications to more sophisticated uses in the pharmaceutical and fine-chemicals sectors and environmental management. Conventional applications of industrial enzymes are expected to grow, with major opportunities in the detergent and animal feed sectors, and new uses in biofuel production and human and animal therapy. In order to design more efficient enzyme reactors and evaluate performance properly, sound mathematical expressions must be developed which consider enzyme kinetics, material balances, and eventual mass transfer limitations. With a focus on problem solving, each chapter provides abridged coverage of the subject, followed by a number of solved problems illustrating resolution procedures and the main concepts underlying them, plus supplementary questions and answers. Based on more than 50 years of teaching experience, Problem Solving in Enzyme Biocatalysis is a unique reference for students of chemical and biochemical engineering, as well as biochemists and chemists dealing with bioprocesses. Contains: Enzyme properties and applications; enzyme kinetics; enzyme reactor design and operation 146 worked problems and solutions in enzyme biocatalysis.
Publisher: John Wiley & Sons
ISBN: 1118341775
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
Enzyme biocatalysis is a fast-growing area in process biotechnology that has expanded from the traditional fields of foods, detergents, and leather applications to more sophisticated uses in the pharmaceutical and fine-chemicals sectors and environmental management. Conventional applications of industrial enzymes are expected to grow, with major opportunities in the detergent and animal feed sectors, and new uses in biofuel production and human and animal therapy. In order to design more efficient enzyme reactors and evaluate performance properly, sound mathematical expressions must be developed which consider enzyme kinetics, material balances, and eventual mass transfer limitations. With a focus on problem solving, each chapter provides abridged coverage of the subject, followed by a number of solved problems illustrating resolution procedures and the main concepts underlying them, plus supplementary questions and answers. Based on more than 50 years of teaching experience, Problem Solving in Enzyme Biocatalysis is a unique reference for students of chemical and biochemical engineering, as well as biochemists and chemists dealing with bioprocesses. Contains: Enzyme properties and applications; enzyme kinetics; enzyme reactor design and operation 146 worked problems and solutions in enzyme biocatalysis.
Problem Solving in Enzyme Biocatalysis
Author: Andrés Illanes
Publisher: John Wiley & Sons
ISBN: 1118341716
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Enzyme biocatalysis is a fast-growing area in process biotechnology that has expanded from the traditional fields of foods, detergents, and leather applications to more sophisticated uses in the pharmaceutical and fine-chemicals sectors and environmental management. Conventional applications of industrial enzymes are expected to grow, with major opportunities in the detergent and animal feed sectors, and new uses in biofuel production and human and animal therapy. In order to design more efficient enzyme reactors and evaluate performance properly, sound mathematical expressions must be developed which consider enzyme kinetics, material balances, and eventual mass transfer limitations. With a focus on problem solving, each chapter provides abridged coverage of the subject, followed by a number of solved problems illustrating resolution procedures and the main concepts underlying them, plus supplementary questions and answers. Based on more than 50 years of teaching experience, Problem Solving in Enzyme Biocatalysis is a unique reference for students of chemical and biochemical engineering, as well as biochemists and chemists dealing with bioprocesses. Contains: Enzyme properties and applications; enzyme kinetics; enzyme reactor design and operation 146 worked problems and solutions in enzyme biocatalysis.
Publisher: John Wiley & Sons
ISBN: 1118341716
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Enzyme biocatalysis is a fast-growing area in process biotechnology that has expanded from the traditional fields of foods, detergents, and leather applications to more sophisticated uses in the pharmaceutical and fine-chemicals sectors and environmental management. Conventional applications of industrial enzymes are expected to grow, with major opportunities in the detergent and animal feed sectors, and new uses in biofuel production and human and animal therapy. In order to design more efficient enzyme reactors and evaluate performance properly, sound mathematical expressions must be developed which consider enzyme kinetics, material balances, and eventual mass transfer limitations. With a focus on problem solving, each chapter provides abridged coverage of the subject, followed by a number of solved problems illustrating resolution procedures and the main concepts underlying them, plus supplementary questions and answers. Based on more than 50 years of teaching experience, Problem Solving in Enzyme Biocatalysis is a unique reference for students of chemical and biochemical engineering, as well as biochemists and chemists dealing with bioprocesses. Contains: Enzyme properties and applications; enzyme kinetics; enzyme reactor design and operation 146 worked problems and solutions in enzyme biocatalysis.
Enzyme Biocatalysis
Author: Andrés Illanes
Publisher: Springer Science & Business Media
ISBN: 1402083610
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.
Publisher: Springer Science & Business Media
ISBN: 1402083610
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.
Industrial Enzyme Applications
Author: Andreas Vogel
Publisher: John Wiley & Sons
ISBN: 3527813772
Category : Science
Languages : en
Pages : 499
Book Description
This reference is a "must-read": It explains how an effective and economically viable enzymatic process in industry is developed and presents numerous successful examples which underline the efficiency of biocatalysis.
Publisher: John Wiley & Sons
ISBN: 3527813772
Category : Science
Languages : en
Pages : 499
Book Description
This reference is a "must-read": It explains how an effective and economically viable enzymatic process in industry is developed and presents numerous successful examples which underline the efficiency of biocatalysis.
Enzyme Cascade Design and Modelling
Author: Selin Kara
Publisher: Springer Nature
ISBN: 3030657183
Category : Science
Languages : en
Pages : 184
Book Description
This book provides a comprehensive overview of the recent developments achieved in the field of chemo/enzymatic cascades with topics spanning from design (in vitro and in vivo) to kinetic- and process modelling as well as process control. Opportunities and challenges of building multi-step chemo/enzymatic reactions are discussed, whereby the latter are critically assessed in each chapter and methods to ease the implementation are explored. Both, multi-enzymatic cascades and chemo-enzymatic cascades are presented with the motivation of combining the strengths of these two worlds (e.g. selectivity, activity and robustness) not neglecting the obstacles and challenges of such endeavour. Furthermore, the use of non-conventional media for catalytic cascade reactions, recent achievements and potential for future developments in a technical environment are addressed.
Publisher: Springer Nature
ISBN: 3030657183
Category : Science
Languages : en
Pages : 184
Book Description
This book provides a comprehensive overview of the recent developments achieved in the field of chemo/enzymatic cascades with topics spanning from design (in vitro and in vivo) to kinetic- and process modelling as well as process control. Opportunities and challenges of building multi-step chemo/enzymatic reactions are discussed, whereby the latter are critically assessed in each chapter and methods to ease the implementation are explored. Both, multi-enzymatic cascades and chemo-enzymatic cascades are presented with the motivation of combining the strengths of these two worlds (e.g. selectivity, activity and robustness) not neglecting the obstacles and challenges of such endeavour. Furthermore, the use of non-conventional media for catalytic cascade reactions, recent achievements and potential for future developments in a technical environment are addressed.
Immobilized Biocatalysts
Author: Peter Grunwald
Publisher: MDPI
ISBN: 3038973181
Category : Science
Languages : en
Pages : 511
Book Description
This book is a printed edition of the Special Issue "Immobilized Biocatalysts" that was published in Catalysts
Publisher: MDPI
ISBN: 3038973181
Category : Science
Languages : en
Pages : 511
Book Description
This book is a printed edition of the Special Issue "Immobilized Biocatalysts" that was published in Catalysts
Biocatalyst Immobilization
Author: Maria Lujan Ferreira
Publisher: Academic Press
ISBN: 0323913776
Category : Science
Languages : en
Pages : 460
Book Description
Biocatalyst Immobilization: Foundations and Applications provides a comprehensive overview of biocatalytic immobilization processes, as well as methods for study, characterization and application. Early chapters discuss current progress in enzyme immobilization and methods for selecting and pretreating enzymes prior to immobilization, with an emphasis on navigating common challenges and employing enzyme supports and post immobilization treatments to impact enzymatic activity. Process-based chapters instruct on measuring and reporting on enzyme immobilization efficiency, protein final content, quantification of reaction products, and the use of nanomaterials to characterize immobilized enzymes. Later chapters examine recent advances, including novel enzymatic reactors, multi-enzymatic biocatalysts, enzymatic biosensors, whole cell immobilization, the industrial application of immobilized enzymes, and perspectives on future trends. - Provides a thorough overview of biocatalyst and enzyme immobilization for research and practical application - Presents methods based content that instructs in enzyme immobilization pretreatment, enzyme supports, post immobilization treatments, measuring enzyme immobilization efficiency, quantification of reaction products, and whole cell immobilization - Features chapter contributions from international leaders in the field
Publisher: Academic Press
ISBN: 0323913776
Category : Science
Languages : en
Pages : 460
Book Description
Biocatalyst Immobilization: Foundations and Applications provides a comprehensive overview of biocatalytic immobilization processes, as well as methods for study, characterization and application. Early chapters discuss current progress in enzyme immobilization and methods for selecting and pretreating enzymes prior to immobilization, with an emphasis on navigating common challenges and employing enzyme supports and post immobilization treatments to impact enzymatic activity. Process-based chapters instruct on measuring and reporting on enzyme immobilization efficiency, protein final content, quantification of reaction products, and the use of nanomaterials to characterize immobilized enzymes. Later chapters examine recent advances, including novel enzymatic reactors, multi-enzymatic biocatalysts, enzymatic biosensors, whole cell immobilization, the industrial application of immobilized enzymes, and perspectives on future trends. - Provides a thorough overview of biocatalyst and enzyme immobilization for research and practical application - Presents methods based content that instructs in enzyme immobilization pretreatment, enzyme supports, post immobilization treatments, measuring enzyme immobilization efficiency, quantification of reaction products, and whole cell immobilization - Features chapter contributions from international leaders in the field
Nanomaterials for Biocatalysis
Author: Guillermo R. Castro
Publisher: Elsevier
ISBN: 0128244372
Category : Technology & Engineering
Languages : en
Pages : 755
Book Description
Nanomaterials for Biocatalysis explains the fundamental design concepts and emerging applications of nanoscale biocatalysts, such as bioconversions, bioelectronics, biosensors, biocomputing and therapeutic applications. Nano-biocatalysts refers to the incorporation of enzymes into nanomaterials. These enzyme-enhanced nanocarriers have many advantages, including low mass transfer limitation, high enzyme capacity, better stabilization, and the formation of single-enzyme nanoparticles. Smart nanocontainers have been developed for the smart release of their embedded active substances. These smart releases can be obtained by using smart coatings as their outer nanoshells. In addition, these nanocontainers could protect the enzymes from chemical or metabolic alterations on their delivering pathways towards the target. This is an important reference source for materials scientists and chemical engineers who want to know more about how nanomaterials are being used for biocatalysis applications. - Explains the major fabrication techniques and applications of nanobiocatalysts - Shows how nanobiocatalysts are used in a variety of environmental and biomedical sectors - Assesses the major challenges associated with the widespread manufacture of nanobiocatalysts
Publisher: Elsevier
ISBN: 0128244372
Category : Technology & Engineering
Languages : en
Pages : 755
Book Description
Nanomaterials for Biocatalysis explains the fundamental design concepts and emerging applications of nanoscale biocatalysts, such as bioconversions, bioelectronics, biosensors, biocomputing and therapeutic applications. Nano-biocatalysts refers to the incorporation of enzymes into nanomaterials. These enzyme-enhanced nanocarriers have many advantages, including low mass transfer limitation, high enzyme capacity, better stabilization, and the formation of single-enzyme nanoparticles. Smart nanocontainers have been developed for the smart release of their embedded active substances. These smart releases can be obtained by using smart coatings as their outer nanoshells. In addition, these nanocontainers could protect the enzymes from chemical or metabolic alterations on their delivering pathways towards the target. This is an important reference source for materials scientists and chemical engineers who want to know more about how nanomaterials are being used for biocatalysis applications. - Explains the major fabrication techniques and applications of nanobiocatalysts - Shows how nanobiocatalysts are used in a variety of environmental and biomedical sectors - Assesses the major challenges associated with the widespread manufacture of nanobiocatalysts
Industrial Enzyme Applications
Author: Andreas Vogel
Publisher: John Wiley & Sons
ISBN: 3527343857
Category : Science
Languages : en
Pages : 430
Book Description
This reference is a "must-read": It explains how an effective and economically viable enzymatic process in industry is developed and presents numerous successful examples which underline the efficiency of biocatalysis.
Publisher: John Wiley & Sons
ISBN: 3527343857
Category : Science
Languages : en
Pages : 430
Book Description
This reference is a "must-read": It explains how an effective and economically viable enzymatic process in industry is developed and presents numerous successful examples which underline the efficiency of biocatalysis.
Removal of Emerging Contaminants Through Microbial Processes
Author: Maulin P Shah
Publisher: Springer Nature
ISBN: 9811559015
Category : Science
Languages : en
Pages : 536
Book Description
The abundance of organic pollutants found in wastewater affect urban surface waters. Traditional wastewater management technologies focus on the removal of suspended solids, nutrients and bacteria, however, new pollutants such as synthetic or naturally occurring chemicals are often not monitored in the environment despite having the potential to enter the environment and cause adverse ecological and human health effects. Collectively referred to as "emerging contaminants," they are mostly derived from domestic activities and occur in trace concentrations ranging from pico to micrograms per liter. Environmental contaminants are resistant to conventional wastewater treatment processes and most of them remain unaffected, causing contamination of receiving water. This in turn leads to the need for advanced wastewater treatment processes capable of removing environmental contaminants to ensure safe fresh water sources. This book provides an up-to-date overview of the current bioremediation strategies, including their limitations, challenges and their potential application to remove environmental pollutants. It also introduces the latest trends and advances in environmental bioremediation, and presents the state-of-the-art in biological and chemical wastewater treatment processes. As such, it will appeal to researchers and policy-makers, as well as undergraduate and graduate environmental sciences students.
Publisher: Springer Nature
ISBN: 9811559015
Category : Science
Languages : en
Pages : 536
Book Description
The abundance of organic pollutants found in wastewater affect urban surface waters. Traditional wastewater management technologies focus on the removal of suspended solids, nutrients and bacteria, however, new pollutants such as synthetic or naturally occurring chemicals are often not monitored in the environment despite having the potential to enter the environment and cause adverse ecological and human health effects. Collectively referred to as "emerging contaminants," they are mostly derived from domestic activities and occur in trace concentrations ranging from pico to micrograms per liter. Environmental contaminants are resistant to conventional wastewater treatment processes and most of them remain unaffected, causing contamination of receiving water. This in turn leads to the need for advanced wastewater treatment processes capable of removing environmental contaminants to ensure safe fresh water sources. This book provides an up-to-date overview of the current bioremediation strategies, including their limitations, challenges and their potential application to remove environmental pollutants. It also introduces the latest trends and advances in environmental bioremediation, and presents the state-of-the-art in biological and chemical wastewater treatment processes. As such, it will appeal to researchers and policy-makers, as well as undergraduate and graduate environmental sciences students.