Author: J. Hoffman-Jorgensen
Publisher: Routledge
ISBN: 1351421549
Category : Mathematics
Languages : en
Pages : 432
Book Description
Volume II of this two-volume text and reference work concentrates on the applications of probability theory to statistics, e.g., the art of calculating densities of complicated transformations of random vectors, exponential models, consistency of maximum estimators, and asymptotic normality of maximum estimators. It also discusses topics of a pure probabilistic nature, such as stochastic processes, regular conditional probabilities, strong Markov chains, random walks, and optimal stopping strategies in random games. Unusual topics include the transformation theory of densities using Hausdorff measures, the consistency theory using the upper definition function, and the asymptotic normality of maximum estimators using twice stochastic differentiability. With an emphasis on applications to statistics, this is a continuation of the first volume, though it may be used independently of that book. Assuming a knowledge of linear algebra and analysis, as well as a course in modern probability, Volume II looks at statistics from a probabilistic point of view, touching only slightly on the practical computation aspects.
Probability With a View Towards Statistics, Volume II
Author: J. Hoffman-Jorgensen
Publisher: Routledge
ISBN: 1351421549
Category : Mathematics
Languages : en
Pages : 432
Book Description
Volume II of this two-volume text and reference work concentrates on the applications of probability theory to statistics, e.g., the art of calculating densities of complicated transformations of random vectors, exponential models, consistency of maximum estimators, and asymptotic normality of maximum estimators. It also discusses topics of a pure probabilistic nature, such as stochastic processes, regular conditional probabilities, strong Markov chains, random walks, and optimal stopping strategies in random games. Unusual topics include the transformation theory of densities using Hausdorff measures, the consistency theory using the upper definition function, and the asymptotic normality of maximum estimators using twice stochastic differentiability. With an emphasis on applications to statistics, this is a continuation of the first volume, though it may be used independently of that book. Assuming a knowledge of linear algebra and analysis, as well as a course in modern probability, Volume II looks at statistics from a probabilistic point of view, touching only slightly on the practical computation aspects.
Publisher: Routledge
ISBN: 1351421549
Category : Mathematics
Languages : en
Pages : 432
Book Description
Volume II of this two-volume text and reference work concentrates on the applications of probability theory to statistics, e.g., the art of calculating densities of complicated transformations of random vectors, exponential models, consistency of maximum estimators, and asymptotic normality of maximum estimators. It also discusses topics of a pure probabilistic nature, such as stochastic processes, regular conditional probabilities, strong Markov chains, random walks, and optimal stopping strategies in random games. Unusual topics include the transformation theory of densities using Hausdorff measures, the consistency theory using the upper definition function, and the asymptotic normality of maximum estimators using twice stochastic differentiability. With an emphasis on applications to statistics, this is a continuation of the first volume, though it may be used independently of that book. Assuming a knowledge of linear algebra and analysis, as well as a course in modern probability, Volume II looks at statistics from a probabilistic point of view, touching only slightly on the practical computation aspects.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Probability For Analysts
Author: Karl Stromberg
Publisher: CRC Press
ISBN: 9780412041716
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book will enable researchers and students of analysis to more easily understand research papers in which probabilistic methods are used to prove theorems of analysis, many of which have no other known proofs. The book assumes a course in measure and integration theory but requires little or no background in probability theory. It emplhasizes topics of interest to analysts, including random series, martingales and Brownian motion.
Publisher: CRC Press
ISBN: 9780412041716
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book will enable researchers and students of analysis to more easily understand research papers in which probabilistic methods are used to prove theorems of analysis, many of which have no other known proofs. The book assumes a course in measure and integration theory but requires little or no background in probability theory. It emplhasizes topics of interest to analysts, including random series, martingales and Brownian motion.
A Modern Introduction to Probability and Statistics
Author: F.M. Dekking
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485
Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Publisher: Springer Science & Business Media
ISBN: 1846281687
Category : Mathematics
Languages : en
Pages : 485
Book Description
Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books
Probability with Statistical Applications
Author: Rinaldo B. Schinazi
Publisher: Springer Science & Business Media
ISBN: 081768249X
Category : Mathematics
Languages : en
Pages : 349
Book Description
This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students’ common difficulties with calculus that does not obscure the thorough treatment of the probability content. The first six chapters of this text neatly and concisely cover the material traditionally required by most undergraduate programs for a first course in probability. The comprehensive text includes a multitude of new examples and exercises, and careful revisions throughout. Particular attention is given to the expansion of the last three chapters of the book with the addition of one entirely new chapter (9) on ’Finding and Comparing Estimators.’ The classroom-tested material presented in this second edition forms the basis for a second course introducing mathematical statistics.
Publisher: Springer Science & Business Media
ISBN: 081768249X
Category : Mathematics
Languages : en
Pages : 349
Book Description
This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students’ common difficulties with calculus that does not obscure the thorough treatment of the probability content. The first six chapters of this text neatly and concisely cover the material traditionally required by most undergraduate programs for a first course in probability. The comprehensive text includes a multitude of new examples and exercises, and careful revisions throughout. Particular attention is given to the expansion of the last three chapters of the book with the addition of one entirely new chapter (9) on ’Finding and Comparing Estimators.’ The classroom-tested material presented in this second edition forms the basis for a second course introducing mathematical statistics.
Probability
Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 113949113X
Category : Mathematics
Languages : en
Pages :
Book Description
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Publisher: Cambridge University Press
ISBN: 113949113X
Category : Mathematics
Languages : en
Pages :
Book Description
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Introduction to Probability
Author: Joseph K. Blitzstein
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Probability and Statistics
Author: Michael J. Evans
Publisher: Macmillan
ISBN: 9780716747420
Category : Mathematics
Languages : en
Pages : 704
Book Description
Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.
Publisher: Macmillan
ISBN: 9780716747420
Category : Mathematics
Languages : en
Pages : 704
Book Description
Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.
Elements of Distribution Theory
Author: Thomas A. Severini
Publisher: Cambridge University Press
ISBN: 9780521844727
Category : Business & Economics
Languages : en
Pages : 534
Book Description
This detailed introduction to distribution theory uses no measure theory, making it suitable for students in statistics and econometrics as well as for researchers who use statistical methods. Good backgrounds in calculus and linear algebra are important and a course in elementary mathematical analysis is useful, but not required. An appendix gives a detailed summary of the mathematical definitions and results that are used in the book. Topics covered range from the basic distribution and density functions, expectation, conditioning, characteristic functions, cumulants, convergence in distribution and the central limit theorem to more advanced concepts such as exchangeability, models with a group structure, asymptotic approximations to integrals, orthogonal polynomials and saddlepoint approximations. The emphasis is on topics useful in understanding statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively.
Publisher: Cambridge University Press
ISBN: 9780521844727
Category : Business & Economics
Languages : en
Pages : 534
Book Description
This detailed introduction to distribution theory uses no measure theory, making it suitable for students in statistics and econometrics as well as for researchers who use statistical methods. Good backgrounds in calculus and linear algebra are important and a course in elementary mathematical analysis is useful, but not required. An appendix gives a detailed summary of the mathematical definitions and results that are used in the book. Topics covered range from the basic distribution and density functions, expectation, conditioning, characteristic functions, cumulants, convergence in distribution and the central limit theorem to more advanced concepts such as exchangeability, models with a group structure, asymptotic approximations to integrals, orthogonal polynomials and saddlepoint approximations. The emphasis is on topics useful in understanding statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively.
Python for Probability, Statistics, and Machine Learning
Author: José Unpingco
Publisher: Springer
ISBN: 3030185451
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
Publisher: Springer
ISBN: 3030185451
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.