Probability and Statistics for the Engineering, Computing, and Physical Sciences

Probability and Statistics for the Engineering, Computing, and Physical Sciences PDF Author: Edward R. Dougherty
Publisher:
ISBN:
Category : Probabilities
Languages : en
Pages : 824

Get Book Here

Book Description

Probability and Statistics for the Engineering, Computing, and Physical Sciences

Probability and Statistics for the Engineering, Computing, and Physical Sciences PDF Author: Edward R. Dougherty
Publisher:
ISBN:
Category : Probabilities
Languages : en
Pages : 824

Get Book Here

Book Description


Probability and Statistics in the Physical Sciences

Probability and Statistics in the Physical Sciences PDF Author: Byron P. Roe
Publisher: Springer Nature
ISBN: 3030536947
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description
This book, now in its third edition, offers a practical guide to the use of probability and statistics in experimental physics that is of value for both advanced undergraduates and graduate students. Focusing on applications and theorems and techniques actually used in experimental research, it includes worked problems with solutions, as well as homework exercises to aid understanding. Suitable for readers with no prior knowledge of statistical techniques, the book comprehensively discusses the topic and features a number of interesting and amusing applications that are often neglected. Providing an introduction to neural net techniques that encompasses deep learning, adversarial neural networks, and boosted decision trees, this new edition includes updated chapters with, for example, additions relating to generating and characteristic functions, Bayes’ theorem, the Feldman-Cousins method, Lagrange multipliers for constraints, estimation of likelihood ratios, and unfolding problems.

Probability and Statistics in the Engineering and Computing Sciences

Probability and Statistics in the Engineering and Computing Sciences PDF Author: Janet Susan Milton
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Computer science
Languages : en
Pages : 754

Get Book Here

Book Description


Mathematics for Physical Science and Engineering

Mathematics for Physical Science and Engineering PDF Author: Frank E. Harris
Publisher: Academic Press
ISBN: 0128010495
Category : Mathematics
Languages : en
Pages : 787

Get Book Here

Book Description
Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems

Introduction to Probability and Statistics for Science, Engineering, and Finance

Introduction to Probability and Statistics for Science, Engineering, and Finance PDF Author: Walter A. Rosenkrantz
Publisher: CRC Press
ISBN: 158488813X
Category : Mathematics
Languages : en
Pages : 680

Get Book Here

Book Description
Integrating interesting and widely used concepts of financial engineering into traditional statistics courses, Introduction to Probability and Statistics for Science, Engineering, and Finance illustrates the role and scope of statistics and probability in various fields. The text first introduces the basics needed to understand and create

Probability and Statistics for Computer Scientists, Second Edition

Probability and Statistics for Computer Scientists, Second Edition PDF Author: Michael Baron
Publisher: CRC Press
ISBN: 1439875901
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

Probability, Statistics, and Queueing Theory

Probability, Statistics, and Queueing Theory PDF Author: Arnold O. Allen
Publisher: Gulf Professional Publishing
ISBN: 9780120510511
Category : Computers
Languages : en
Pages : 776

Get Book Here

Book Description
This is a textbook on applied probability and statistics with computer science applications for students at the upper undergraduate level. It may also be used as a self study book for the practicing computer science professional. The successful first edition of this book proved extremely useful to students who need to use probability, statistics and queueing theory to solve problems in other fields, such as engineering, physics, operations research, and management science. The book has also been successfully used for courses in queueing theory for operations research students. This second edition includes a new chapter on regression as well as more than twice as many exercises at the end of each chapter. While the emphasis is the same as in the first edition, this new book makes more extensive use of available personal computer software, such as Minitab and Mathematica.

Probability and Statistics

Probability and Statistics PDF Author: Michael J. Evans
Publisher: Macmillan
ISBN: 9780716747420
Category : Mathematics
Languages : en
Pages : 704

Get Book Here

Book Description
Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Probability and Statistics for Engineering and the Sciences

Probability and Statistics for Engineering and the Sciences PDF Author: Jay Devore
Publisher: Cengage Learning
ISBN: 9780495382171
Category : Mathematics
Languages : en
Pages : 768

Get Book Here

Book Description
This market-leading text provides a comprehensive introduction to probability and statistics for engineering students in all specialties. This proven, accurate book and its excellent examples evidence Jay Devore’s reputation as an outstanding author and leader in the academic community. Devore emphasizes concepts, models, methodology, and applications as opposed to rigorous mathematical development and derivations. Through the use of lively and realistic examples, students go beyond simply learning about statistics-they actually put the methods to use. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Probability and Statistics for Data Science

Probability and Statistics for Data Science PDF Author: Norman Matloff
Publisher: CRC Press
ISBN: 0429687117
Category : Business & Economics
Languages : en
Pages : 289

Get Book Here

Book Description
Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.