Author: CH. A. Charalambides
Publisher: CRC Press
ISBN: 1420036084
Category : Mathematics
Languages : en
Pages : 665
Book Description
This monograph of carefully collected articles reviews recent developments in theoretical and applied statistical science, highlights current noteworthy results and illustrates their applications; and points out possible new directions to pursue. With its enlightening account of statistical discoveries and its numerous figures and tables, Probabili
Probability and Statistical Models with Applications
Author: CH. A. Charalambides
Publisher: CRC Press
ISBN: 1420036084
Category : Mathematics
Languages : en
Pages : 665
Book Description
This monograph of carefully collected articles reviews recent developments in theoretical and applied statistical science, highlights current noteworthy results and illustrates their applications; and points out possible new directions to pursue. With its enlightening account of statistical discoveries and its numerous figures and tables, Probabili
Publisher: CRC Press
ISBN: 1420036084
Category : Mathematics
Languages : en
Pages : 665
Book Description
This monograph of carefully collected articles reviews recent developments in theoretical and applied statistical science, highlights current noteworthy results and illustrates their applications; and points out possible new directions to pursue. With its enlightening account of statistical discoveries and its numerous figures and tables, Probabili
Models for Probability and Statistical Inference
Author: James H. Stapleton
Publisher: John Wiley & Sons
ISBN: 0470183403
Category : Mathematics
Languages : en
Pages : 466
Book Description
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Publisher: John Wiley & Sons
ISBN: 0470183403
Category : Mathematics
Languages : en
Pages : 466
Book Description
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Probability and Statistical Models
Author: Arjun K. Gupta
Publisher: Springer Science & Business Media
ISBN: 0817649875
Category : Mathematics
Languages : en
Pages : 270
Book Description
With an emphasis on models and techniques, this textbook introduces many of the fundamental concepts of stochastic modeling that are now a vital component of almost every scientific investigation. In particular, emphasis is placed on laying the foundation for solving problems in reliability, insurance, finance, and credit risk. The material has been carefully selected to cover the basic concepts and techniques on each topic, making this an ideal introductory gateway to more advanced learning. With exercises and solutions to selected problems accompanying each chapter, this textbook is for a wide audience including advanced undergraduate and beginning-level graduate students, researchers, and practitioners in mathematics, statistics, engineering, and economics.
Publisher: Springer Science & Business Media
ISBN: 0817649875
Category : Mathematics
Languages : en
Pages : 270
Book Description
With an emphasis on models and techniques, this textbook introduces many of the fundamental concepts of stochastic modeling that are now a vital component of almost every scientific investigation. In particular, emphasis is placed on laying the foundation for solving problems in reliability, insurance, finance, and credit risk. The material has been carefully selected to cover the basic concepts and techniques on each topic, making this an ideal introductory gateway to more advanced learning. With exercises and solutions to selected problems accompanying each chapter, this textbook is for a wide audience including advanced undergraduate and beginning-level graduate students, researchers, and practitioners in mathematics, statistics, engineering, and economics.
Introduction to Probability
Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
ISBN: 1118548558
Category : Mathematics
Languages : en
Pages : 548
Book Description
INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.
Publisher: John Wiley & Sons
ISBN: 1118548558
Category : Mathematics
Languages : en
Pages : 548
Book Description
INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.
Statistical Models
Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 1139477315
Category : Mathematics
Languages : en
Pages : 459
Book Description
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.
Publisher: Cambridge University Press
ISBN: 1139477315
Category : Mathematics
Languages : en
Pages : 459
Book Description
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.
Nonlinear Statistical Models
Author: A. Ronald Gallant
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 632
Book Description
Univariate nonlinear regression; Univariate nonlinear regression: special situations; A unified asymptotic theory of nonlinear models with regression structure; Univariate nonlinear regression: asymptotic theory; Multivariate nonlinear regression; Nonlinear simultaneus equations models; A unified asymptotic theory for dynamic nonlinear models.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 632
Book Description
Univariate nonlinear regression; Univariate nonlinear regression: special situations; A unified asymptotic theory of nonlinear models with regression structure; Univariate nonlinear regression: asymptotic theory; Multivariate nonlinear regression; Nonlinear simultaneus equations models; A unified asymptotic theory for dynamic nonlinear models.
Applied Probability Models with Optimization Applications
Author: Sheldon M. Ross
Publisher: Courier Corporation
ISBN: 0486318648
Category : Mathematics
Languages : en
Pages : 226
Book Description
Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.
Publisher: Courier Corporation
ISBN: 0486318648
Category : Mathematics
Languages : en
Pages : 226
Book Description
Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.
System Reliability Theory
Author: Arnljot Høyland
Publisher: John Wiley & Sons
ISBN: 0470317744
Category : Technology & Engineering
Languages : en
Pages : 536
Book Description
A comprehensive introduction to reliability analysis. The first section provides a thorough but elementary prologue to reliability theory. The latter half comprises more advanced analytical tools including Markov processes, renewal theory, life data analysis, accelerated life testing and Bayesian reliability analysis. Features numerous worked examples. Each chapter concludes with a selection of problems plus additional material on applications.
Publisher: John Wiley & Sons
ISBN: 0470317744
Category : Technology & Engineering
Languages : en
Pages : 536
Book Description
A comprehensive introduction to reliability analysis. The first section provides a thorough but elementary prologue to reliability theory. The latter half comprises more advanced analytical tools including Markov processes, renewal theory, life data analysis, accelerated life testing and Bayesian reliability analysis. Features numerous worked examples. Each chapter concludes with a selection of problems plus additional material on applications.
Probability Theory and Statistical Applications
Author: Peter Zörnig
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110402831
Category : Mathematics
Languages : en
Pages : 333
Book Description
This accessible and easy-to-read book provides many examples to illustrate diverse topics in probability and statistics, from initial concepts up to advanced calculations. Special attention is devoted e.g. to independency of events, inequalities in probability and functions of random variables. The book is directed to students of mathematics, statistics, engineering, and other quantitative sciences, in particular to readers who need or want to learn by self-study. The author is convinced that sophisticated examples are more useful for the student than a lengthy formalism treating the greatest possible generality. Contents: Mathematics revision Introduction to probability Finite sample spaces Conditional probability and independence One-dimensional random variables Functions of random variables Bi-dimensional random variables Characteristics of random variables Discrete probability models Continuous probability models Generating functions in probability Sums of many random variables Samples and sampling distributions Estimation of parameters Hypothesis tests
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110402831
Category : Mathematics
Languages : en
Pages : 333
Book Description
This accessible and easy-to-read book provides many examples to illustrate diverse topics in probability and statistics, from initial concepts up to advanced calculations. Special attention is devoted e.g. to independency of events, inequalities in probability and functions of random variables. The book is directed to students of mathematics, statistics, engineering, and other quantitative sciences, in particular to readers who need or want to learn by self-study. The author is convinced that sophisticated examples are more useful for the student than a lengthy formalism treating the greatest possible generality. Contents: Mathematics revision Introduction to probability Finite sample spaces Conditional probability and independence One-dimensional random variables Functions of random variables Bi-dimensional random variables Characteristics of random variables Discrete probability models Continuous probability models Generating functions in probability Sums of many random variables Samples and sampling distributions Estimation of parameters Hypothesis tests
Probability Models and Applications
Author: Ingram Olkin
Publisher: Macmillan College
ISBN: 9780023892202
Category : Mathematics
Languages : en
Pages : 715
Book Description
This text promotes cross-disciplinary research into the modelling of the ever increasing complex data involved in scientific and technological research. It shows where and how to apply probability models to real phenomena and how to prepare the tools necessary for such applications.
Publisher: Macmillan College
ISBN: 9780023892202
Category : Mathematics
Languages : en
Pages : 715
Book Description
This text promotes cross-disciplinary research into the modelling of the ever increasing complex data involved in scientific and technological research. It shows where and how to apply probability models to real phenomena and how to prepare the tools necessary for such applications.