Author: Samantha Kleinberg
Publisher: Cambridge University Press
ISBN: 1107026482
Category : Computers
Languages : en
Pages : 269
Book Description
Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.
Causality, Probability, and Time
Author: Samantha Kleinberg
Publisher: Cambridge University Press
ISBN: 1107026482
Category : Computers
Languages : en
Pages : 269
Book Description
Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.
Publisher: Cambridge University Press
ISBN: 1107026482
Category : Computers
Languages : en
Pages : 269
Book Description
Presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships.
Causality, Probability, and Medicine
Author: Donald Gillies
Publisher: Routledge
ISBN: 1317564286
Category : Philosophy
Languages : en
Pages : 248
Book Description
Why is understanding causation so important in philosophy and the sciences? Should causation be defined in terms of probability? Whilst causation plays a major role in theories and concepts of medicine, little attempt has been made to connect causation and probability with medicine itself. Causality, Probability, and Medicine is one of the first books to apply philosophical reasoning about causality to important topics and debates in medicine. Donald Gillies provides a thorough introduction to and assessment of competing theories of causality in philosophy, including action-related theories, causality and mechanisms, and causality and probability. Throughout the book he applies them to important discoveries and theories within medicine, such as germ theory; tuberculosis and cholera; smoking and heart disease; the first ever randomized controlled trial designed to test the treatment of tuberculosis; the growing area of philosophy of evidence-based medicine; and philosophy of epidemiology. This book will be of great interest to students and researchers in philosophy of science and philosophy of medicine, as well as those working in medicine, nursing and related health disciplines where a working knowledge of causality and probability is required.
Publisher: Routledge
ISBN: 1317564286
Category : Philosophy
Languages : en
Pages : 248
Book Description
Why is understanding causation so important in philosophy and the sciences? Should causation be defined in terms of probability? Whilst causation plays a major role in theories and concepts of medicine, little attempt has been made to connect causation and probability with medicine itself. Causality, Probability, and Medicine is one of the first books to apply philosophical reasoning about causality to important topics and debates in medicine. Donald Gillies provides a thorough introduction to and assessment of competing theories of causality in philosophy, including action-related theories, causality and mechanisms, and causality and probability. Throughout the book he applies them to important discoveries and theories within medicine, such as germ theory; tuberculosis and cholera; smoking and heart disease; the first ever randomized controlled trial designed to test the treatment of tuberculosis; the growing area of philosophy of evidence-based medicine; and philosophy of epidemiology. This book will be of great interest to students and researchers in philosophy of science and philosophy of medicine, as well as those working in medicine, nursing and related health disciplines where a working knowledge of causality and probability is required.
Probabilistic Causality
Author: Ellery Eells
Publisher: Cambridge University Press
ISBN: 0521392446
Category : Business & Economics
Languages : en
Pages : 427
Book Description
In this important first book in the series Cambridge Studies in Probability, Induction and Decision Theory, Ellery Eells explores and refines current philosophical conceptions of probabilistic causality. In a probabilistic theory of causation, causes increase the probability of their effects rather than necessitate their effects in the ways traditional deterministic theories have specified. Philosophical interest in this subject arises from attempts to understand population sciences as well as indeterminism in physics. Taking into account issues involving spurious correlation, probabilistic causal interaction, disjunctive causal factors, and temporal ideas, Professor Eells advances the analysis of what it is for one factor to be a positive causal factor for another. A salient feature of the book is a new theory of token level probabilistic causation in which the evolution of the probability of a later event from an earlier event is central.
Publisher: Cambridge University Press
ISBN: 0521392446
Category : Business & Economics
Languages : en
Pages : 427
Book Description
In this important first book in the series Cambridge Studies in Probability, Induction and Decision Theory, Ellery Eells explores and refines current philosophical conceptions of probabilistic causality. In a probabilistic theory of causation, causes increase the probability of their effects rather than necessitate their effects in the ways traditional deterministic theories have specified. Philosophical interest in this subject arises from attempts to understand population sciences as well as indeterminism in physics. Taking into account issues involving spurious correlation, probabilistic causal interaction, disjunctive causal factors, and temporal ideas, Professor Eells advances the analysis of what it is for one factor to be a positive causal factor for another. A salient feature of the book is a new theory of token level probabilistic causation in which the evolution of the probability of a later event from an earlier event is central.
Causality
Author: Judea Pearl
Publisher: Cambridge University Press
ISBN: 052189560X
Category : Computers
Languages : en
Pages : 487
Book Description
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
Publisher: Cambridge University Press
ISBN: 052189560X
Category : Computers
Languages : en
Pages : 487
Book Description
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
Tychomancy
Author: Michael Strevens
Publisher: Harvard University Press
ISBN: 0674076028
Category : Science
Languages : en
Pages : 260
Book Description
Tychomancy—meaning “the divination of chances”—presents a set of rules for inferring the physical probabilities of outcomes from the causal or dynamic properties of the systems that produce them. Probabilities revealed by the rules are wide-ranging: they include the probability of getting a 5 on a die roll, the probability distributions found in statistical physics, and the probabilities that underlie many prima facie judgments about fitness in evolutionary biology. Michael Strevens makes three claims about the rules. First, they are reliable. Second, they are known, though not fully consciously, to all human beings: they constitute a key part of the physical intuition that allows us to navigate around the world safely in the absence of formal scientific knowledge. Third, they have played a crucial but unrecognized role in several major scientific innovations. A large part of Tychomancy is devoted to this historical role for probability inference rules. Strevens first analyzes James Clerk Maxwell’s extraordinary, apparently a priori, deduction of the molecular velocity distribution in gases, which launched statistical physics. Maxwell did not derive his distribution from logic alone, Strevens proposes, but rather from probabilistic knowledge common to all human beings, even infants as young as six months old. Strevens then turns to Darwin’s theory of natural selection, the statistics of measurement, and the creation of models of complex systems, contending in each case that these elements of science could not have emerged when or how they did without the ability to “eyeball” the values of physical probabilities.
Publisher: Harvard University Press
ISBN: 0674076028
Category : Science
Languages : en
Pages : 260
Book Description
Tychomancy—meaning “the divination of chances”—presents a set of rules for inferring the physical probabilities of outcomes from the causal or dynamic properties of the systems that produce them. Probabilities revealed by the rules are wide-ranging: they include the probability of getting a 5 on a die roll, the probability distributions found in statistical physics, and the probabilities that underlie many prima facie judgments about fitness in evolutionary biology. Michael Strevens makes three claims about the rules. First, they are reliable. Second, they are known, though not fully consciously, to all human beings: they constitute a key part of the physical intuition that allows us to navigate around the world safely in the absence of formal scientific knowledge. Third, they have played a crucial but unrecognized role in several major scientific innovations. A large part of Tychomancy is devoted to this historical role for probability inference rules. Strevens first analyzes James Clerk Maxwell’s extraordinary, apparently a priori, deduction of the molecular velocity distribution in gases, which launched statistical physics. Maxwell did not derive his distribution from logic alone, Strevens proposes, but rather from probabilistic knowledge common to all human beings, even infants as young as six months old. Strevens then turns to Darwin’s theory of natural selection, the statistics of measurement, and the creation of models of complex systems, contending in each case that these elements of science could not have emerged when or how they did without the ability to “eyeball” the values of physical probabilities.
Actual Causality
Author: Joseph Y. Halpern
Publisher: MIT Press
ISBN: 0262035022
Category : Computers
Languages : en
Pages : 240
Book Description
Explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression.
Publisher: MIT Press
ISBN: 0262035022
Category : Computers
Languages : en
Pages : 240
Book Description
Explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression.
The Art of Causal Conjecture
Author: Glenn Shafer
Publisher: MIT Press
ISBN: 9780262193689
Category : Computers
Languages : en
Pages : 554
Book Description
In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences -- medicine, business, engineering, and artificial intelligence -- must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.
Publisher: MIT Press
ISBN: 9780262193689
Category : Computers
Languages : en
Pages : 554
Book Description
In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences -- medicine, business, engineering, and artificial intelligence -- must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.
Causality
Author: Carlo Berzuini
Publisher: John Wiley & Sons
ISBN: 1119941733
Category : Mathematics
Languages : en
Pages : 387
Book Description
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1119941733
Category : Mathematics
Languages : en
Pages : 387
Book Description
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.
Causation, Prediction, and Search
Author: Peter Spirtes
Publisher: Springer Science & Business Media
ISBN: 1461227488
Category : Mathematics
Languages : en
Pages : 551
Book Description
This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.
Publisher: Springer Science & Business Media
ISBN: 1461227488
Category : Mathematics
Languages : en
Pages : 551
Book Description
This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.
Causal Inference in Statistics
Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
Publisher: John Wiley & Sons
ISBN: 1119186862
Category : Mathematics
Languages : en
Pages : 162
Book Description
CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.