Author: Michel Habib
Publisher: Springer Science & Business Media
ISBN: 3662127881
Category : Mathematics
Languages : en
Pages : 342
Book Description
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Probabilistic Methods for Algorithmic Discrete Mathematics
Author: Michel Habib
Publisher: Springer Science & Business Media
ISBN: 3662127881
Category : Mathematics
Languages : en
Pages : 342
Book Description
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Publisher: Springer Science & Business Media
ISBN: 3662127881
Category : Mathematics
Languages : en
Pages : 342
Book Description
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
The Probabilistic Method
Author: Noga Alon
Publisher: John Wiley & Sons
ISBN: 1119062071
Category : Mathematics
Languages : en
Pages : 396
Book Description
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
Publisher: John Wiley & Sons
ISBN: 1119062071
Category : Mathematics
Languages : en
Pages : 396
Book Description
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
The Probabilistic Method
Author: Noga Alon
Publisher: John Wiley & Sons
ISBN: 1118210441
Category : Mathematics
Languages : en
Pages : 257
Book Description
Praise for the Second Edition: "Serious researchers in combinatorics or algorithm design will wish to read the book in its entirety...the book may also be enjoyed on a lighter level since the different chapters are largely independent and so it is possible to pick out gems in one's own area..." —Formal Aspects of Computing This Third Edition of The Probabilistic Method reflects the most recent developments in the field while maintaining the standard of excellence that established this book as the leading reference on probabilistic methods in combinatorics. Maintaining its clear writing style, illustrative examples, and practical exercises, this new edition emphasizes methodology, enabling readers to use probabilistic techniques for solving problems in such fields as theoretical computer science, mathematics, and statistical physics. The book begins with a description of tools applied in probabilistic arguments, including basic techniques that use expectation and variance as well as the more recent applications of martingales and correlation inequalities. Next, the authors examine where probabilistic techniques have been applied successfully, exploring such topics as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Sections labeled "The Probabilistic Lens" offer additional insights into the application of the probabilistic approach, and the appendix has been updated to include methodologies for finding lower bounds for Large Deviations. The Third Edition also features: A new chapter on graph property testing, which is a current topic that incorporates combinatorial, probabilistic, and algorithmic techniques An elementary approach using probabilistic techniques to the powerful Szemerédi Regularity Lemma and its applications New sections devoted to percolation and liar games A new chapter that provides a modern treatment of the Erdös-Rényi phase transition in the Random Graph Process Written by two leading authorities in the field, The Probabilistic Method, Third Edition is an ideal reference for researchers in combinatorics and algorithm design who would like to better understand the use of probabilistic methods. The book's numerous exercises and examples also make it an excellent textbook for graduate-level courses in mathematics and computer science.
Publisher: John Wiley & Sons
ISBN: 1118210441
Category : Mathematics
Languages : en
Pages : 257
Book Description
Praise for the Second Edition: "Serious researchers in combinatorics or algorithm design will wish to read the book in its entirety...the book may also be enjoyed on a lighter level since the different chapters are largely independent and so it is possible to pick out gems in one's own area..." —Formal Aspects of Computing This Third Edition of The Probabilistic Method reflects the most recent developments in the field while maintaining the standard of excellence that established this book as the leading reference on probabilistic methods in combinatorics. Maintaining its clear writing style, illustrative examples, and practical exercises, this new edition emphasizes methodology, enabling readers to use probabilistic techniques for solving problems in such fields as theoretical computer science, mathematics, and statistical physics. The book begins with a description of tools applied in probabilistic arguments, including basic techniques that use expectation and variance as well as the more recent applications of martingales and correlation inequalities. Next, the authors examine where probabilistic techniques have been applied successfully, exploring such topics as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Sections labeled "The Probabilistic Lens" offer additional insights into the application of the probabilistic approach, and the appendix has been updated to include methodologies for finding lower bounds for Large Deviations. The Third Edition also features: A new chapter on graph property testing, which is a current topic that incorporates combinatorial, probabilistic, and algorithmic techniques An elementary approach using probabilistic techniques to the powerful Szemerédi Regularity Lemma and its applications New sections devoted to percolation and liar games A new chapter that provides a modern treatment of the Erdös-Rényi phase transition in the Random Graph Process Written by two leading authorities in the field, The Probabilistic Method, Third Edition is an ideal reference for researchers in combinatorics and algorithm design who would like to better understand the use of probabilistic methods. The book's numerous exercises and examples also make it an excellent textbook for graduate-level courses in mathematics and computer science.
Graph Colouring and the Probabilistic Method
Author: Michael Molloy
Publisher: Springer Science & Business Media
ISBN: 3642040160
Category : Mathematics
Languages : en
Pages : 320
Book Description
Over the past decade, many major advances have been made in the field of graph coloring via the probabilistic method. This monograph, by two of the best on the topic, provides an accessible and unified treatment of these results, using tools such as the Lovasz Local Lemma and Talagrand's concentration inequality.
Publisher: Springer Science & Business Media
ISBN: 3642040160
Category : Mathematics
Languages : en
Pages : 320
Book Description
Over the past decade, many major advances have been made in the field of graph coloring via the probabilistic method. This monograph, by two of the best on the topic, provides an accessible and unified treatment of these results, using tools such as the Lovasz Local Lemma and Talagrand's concentration inequality.
Ten Lectures on the Probabilistic Method
Author: Joel Spencer
Publisher: SIAM
ISBN: 9781611970074
Category : Mathematics
Languages : en
Pages : 98
Book Description
This update of the 1987 title of the same name is an examination of what is currently known about the probabilistic method, written by one of its principal developers. Based on the notes from Spencer's 1986 series of ten lectures, this new edition contains an additional lecture: The Janson inequalities. These inequalities allow accurate approximation of extremely small probabilities. A new algorithmic approach to the Lovasz Local Lemma, attributed to Jozsef Beck, has been added to Lecture 8, as well. Throughout the monograph, Spencer retains the informal style of his original lecture notes and emphasizes the methodology, shunning the more technical "best possible" results in favor of clearer exposition. The book is not encyclopedic--it contains only those examples that clearly display the methodology. The probabilistic method is a powerful tool in graph theory, combinatorics, and theoretical computer science. It allows one to prove the existence of objects with certain properties (e.g., colorings) by showing that an appropriately defined random object has positive probability of having those properties.
Publisher: SIAM
ISBN: 9781611970074
Category : Mathematics
Languages : en
Pages : 98
Book Description
This update of the 1987 title of the same name is an examination of what is currently known about the probabilistic method, written by one of its principal developers. Based on the notes from Spencer's 1986 series of ten lectures, this new edition contains an additional lecture: The Janson inequalities. These inequalities allow accurate approximation of extremely small probabilities. A new algorithmic approach to the Lovasz Local Lemma, attributed to Jozsef Beck, has been added to Lecture 8, as well. Throughout the monograph, Spencer retains the informal style of his original lecture notes and emphasizes the methodology, shunning the more technical "best possible" results in favor of clearer exposition. The book is not encyclopedic--it contains only those examples that clearly display the methodology. The probabilistic method is a powerful tool in graph theory, combinatorics, and theoretical computer science. It allows one to prove the existence of objects with certain properties (e.g., colorings) by showing that an appropriately defined random object has positive probability of having those properties.
Concentration of Measure for the Analysis of Randomized Algorithms
Author: Devdatt P. Dubhashi
Publisher: Cambridge University Press
ISBN: 1139480995
Category : Computers
Languages : en
Pages : 213
Book Description
Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.
Publisher: Cambridge University Press
ISBN: 1139480995
Category : Computers
Languages : en
Pages : 213
Book Description
Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.
Algorithms - ESA 2002
Author: Rolf Möhring
Publisher: Springer
ISBN: 3540457496
Category : Computers
Languages : en
Pages : 940
Book Description
This volume contains the 74 contributed papers and abstracts of 4 of the 5 invited talks presented at the 10th Annual European Symposium on Algorithms (ESA 2002), held at the University of Rome “La Sapienza”, Rome, Italy, 17-21 September, 2002. For the ?rst time, ESA had two tracks, with separate program committees, which dealt respectively with: – the design and mathematical analysis of algorithms (the “Design and An- ysis” track); – real-world applications, engineering and experimental analysis of algorithms (the “Engineering and Applications” track). Previous ESAs were held in Bad Honnef, Germany (1993); Utrecht, The Neth- lands (1994); Corfu, Greece (1995); Barcelona, Spain (1996); Graz, Austria (1997); Venice, Italy (1998); Prague, Czech Republic (1999); Saarbruc ̈ ken, Ger- ? many (2000), and Arhus, Denmark (2001). The predecessor to the Engineering and Applications track of ESA was the Annual Workshop on Algorithm En- neering (WAE). Previous WAEs were held in Venice, Italy (1997), Saarbruc ̈ ken, ? Germany (1998), London, UK (1999), Saarbru ̈cken, Germany (2000), and Arhus, Denmark (2001). The proceedings of the previous ESAs were published as Springer LNCS volumes 726, 855, 979, 1284, 1461, 1643, 1879, and 2161. The proceedings of WAEs from 1999 onwards were published as Springer LNCS volumes 1668, 1982, and 2161.
Publisher: Springer
ISBN: 3540457496
Category : Computers
Languages : en
Pages : 940
Book Description
This volume contains the 74 contributed papers and abstracts of 4 of the 5 invited talks presented at the 10th Annual European Symposium on Algorithms (ESA 2002), held at the University of Rome “La Sapienza”, Rome, Italy, 17-21 September, 2002. For the ?rst time, ESA had two tracks, with separate program committees, which dealt respectively with: – the design and mathematical analysis of algorithms (the “Design and An- ysis” track); – real-world applications, engineering and experimental analysis of algorithms (the “Engineering and Applications” track). Previous ESAs were held in Bad Honnef, Germany (1993); Utrecht, The Neth- lands (1994); Corfu, Greece (1995); Barcelona, Spain (1996); Graz, Austria (1997); Venice, Italy (1998); Prague, Czech Republic (1999); Saarbruc ̈ ken, Ger- ? many (2000), and Arhus, Denmark (2001). The predecessor to the Engineering and Applications track of ESA was the Annual Workshop on Algorithm En- neering (WAE). Previous WAEs were held in Venice, Italy (1997), Saarbruc ̈ ken, ? Germany (1998), London, UK (1999), Saarbru ̈cken, Germany (2000), and Arhus, Denmark (2001). The proceedings of the previous ESAs were published as Springer LNCS volumes 726, 855, 979, 1284, 1461, 1643, 1879, and 2161. The proceedings of WAEs from 1999 onwards were published as Springer LNCS volumes 1668, 1982, and 2161.
Fast Parallel Algorithms for Graph Matching Problems
Author: Marek Karpiński
Publisher: Oxford University Press
ISBN: 9780198501626
Category : Computers
Languages : en
Pages : 228
Book Description
The matching problem is central to graph theory and the theory of algorithms. This book provides a comprehensive and straightforward introduction to the basic methods for designing efficient parallel algorithms for graph matching problems. Written for students at the beginning graduate level, the exposition is largely self-contained and example-driven; prerequisites have been kept to a minimum by including relevant background material. The book contains full details of several new techniques and will be of interest to researchers in computer science, operations research, discrete mathematics, and electrical engineering. The main theoretical tools are presented in three independent chapters, devoted to combinatorial tools, probabilistic tools, and algebraic tools. One of the goals of the book is to show how these three approaches can be combined to develop efficient parallel algorithms. The book represents a meeting point of interesting algorithmic techniques and opens up new algebraic and geometric areas.
Publisher: Oxford University Press
ISBN: 9780198501626
Category : Computers
Languages : en
Pages : 228
Book Description
The matching problem is central to graph theory and the theory of algorithms. This book provides a comprehensive and straightforward introduction to the basic methods for designing efficient parallel algorithms for graph matching problems. Written for students at the beginning graduate level, the exposition is largely self-contained and example-driven; prerequisites have been kept to a minimum by including relevant background material. The book contains full details of several new techniques and will be of interest to researchers in computer science, operations research, discrete mathematics, and electrical engineering. The main theoretical tools are presented in three independent chapters, devoted to combinatorial tools, probabilistic tools, and algebraic tools. One of the goals of the book is to show how these three approaches can be combined to develop efficient parallel algorithms. The book represents a meeting point of interesting algorithmic techniques and opens up new algebraic and geometric areas.
Probability on Discrete Structures
Author: Harry Kesten
Publisher: Springer Science & Business Media
ISBN: 3662094444
Category : Mathematics
Languages : en
Pages : 358
Book Description
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
Publisher: Springer Science & Business Media
ISBN: 3662094444
Category : Mathematics
Languages : en
Pages : 358
Book Description
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
Finite Markov Chains and Algorithmic Applications
Author: Olle Häggström
Publisher: Cambridge University Press
ISBN: 9780521890014
Category : Mathematics
Languages : en
Pages : 132
Book Description
Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.
Publisher: Cambridge University Press
ISBN: 9780521890014
Category : Mathematics
Languages : en
Pages : 132
Book Description
Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.