Author: Andreas Miroslaus Wichert
Publisher: World Scientific
ISBN: 9811224323
Category : Computers
Languages : en
Pages : 497
Book Description
This unique compendium presents an introduction to problem solving, information theory, statistical machine learning, stochastic methods and quantum computation. It indicates how to apply quantum computation to problem solving, machine learning and quantum-like models to decision making — the core disciplines of artificial intelligence.Most of the chapters were rewritten and extensive new materials were updated. New topics include quantum machine learning, quantum-like Bayesian networks and mind in Everett many-worlds.
Principles Of Quantum Artificial Intelligence: Quantum Problem Solving And Machine Learning (Second Edition)
Author: Andreas Miroslaus Wichert
Publisher: World Scientific
ISBN: 9811224323
Category : Computers
Languages : en
Pages : 497
Book Description
This unique compendium presents an introduction to problem solving, information theory, statistical machine learning, stochastic methods and quantum computation. It indicates how to apply quantum computation to problem solving, machine learning and quantum-like models to decision making — the core disciplines of artificial intelligence.Most of the chapters were rewritten and extensive new materials were updated. New topics include quantum machine learning, quantum-like Bayesian networks and mind in Everett many-worlds.
Publisher: World Scientific
ISBN: 9811224323
Category : Computers
Languages : en
Pages : 497
Book Description
This unique compendium presents an introduction to problem solving, information theory, statistical machine learning, stochastic methods and quantum computation. It indicates how to apply quantum computation to problem solving, machine learning and quantum-like models to decision making — the core disciplines of artificial intelligence.Most of the chapters were rewritten and extensive new materials were updated. New topics include quantum machine learning, quantum-like Bayesian networks and mind in Everett many-worlds.
Principles of Quantum Artificial Intelligence
Author: Andreas Wichert
Publisher: World Scientific Publishing Company
ISBN: 9789814566742
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
In this book, we introduce quantum computation and its application to AI. We highlight problem solving and knowledge representation framework. Based on information theory, we cover two main principles of quantum computation -- Quantum Fourier transform and Grover search. Then, we indicate how these two principles can be applied to problem solving and finally present a general model of a quantum computer that is based on production systems.
Publisher: World Scientific Publishing Company
ISBN: 9789814566742
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
In this book, we introduce quantum computation and its application to AI. We highlight problem solving and knowledge representation framework. Based on information theory, we cover two main principles of quantum computation -- Quantum Fourier transform and Grover search. Then, we indicate how these two principles can be applied to problem solving and finally present a general model of a quantum computer that is based on production systems.
Principles of Quantum Artificial Intelligence
Author: Andreas Wichert
Publisher:
ISBN: 9789811224300
Category : Computers
Languages : en
Pages : 498
Book Description
Publisher:
ISBN: 9789811224300
Category : Computers
Languages : en
Pages : 498
Book Description
Principles Of Quantum Artificial Intelligence
Author: Andreas Miroslaus Wichert
Publisher: World Scientific
ISBN: 9814566764
Category : Computers
Languages : en
Pages : 277
Book Description
In this book, we introduce quantum computation and its application to AI. We highlight problem solving and knowledge representation framework. Based on information theory, we cover two main principles of quantum computation — Quantum Fourier transform and Grover search. Then, we indicate how these two principles can be applied to problem solving and finally present a general model of a quantum computer that is based on production systems.
Publisher: World Scientific
ISBN: 9814566764
Category : Computers
Languages : en
Pages : 277
Book Description
In this book, we introduce quantum computation and its application to AI. We highlight problem solving and knowledge representation framework. Based on information theory, we cover two main principles of quantum computation — Quantum Fourier transform and Grover search. Then, we indicate how these two principles can be applied to problem solving and finally present a general model of a quantum computer that is based on production systems.
Supervised Learning with Quantum Computers
Author: Maria Schuld
Publisher: Springer
ISBN: 3319964240
Category : Science
Languages : en
Pages : 293
Book Description
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
Publisher: Springer
ISBN: 3319964240
Category : Science
Languages : en
Pages : 293
Book Description
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
The Principles of Deep Learning Theory
Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473
Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473
Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Machine Learning with Quantum Computers
Author: Maria Schuld
Publisher: Springer Nature
ISBN: 3030830985
Category : Science
Languages : en
Pages : 321
Book Description
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
Publisher: Springer Nature
ISBN: 3030830985
Category : Science
Languages : en
Pages : 321
Book Description
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
From Schrödinger's Equation to Deep Learning: A Quantum Approach
Author: N.B. Singh
Publisher: N.B. Singh
ISBN:
Category : Computers
Languages : en
Pages : 306
Book Description
"From Schrödinger's Equation to Deep Learning: A Quantum Approach" offers a captivating exploration that bridges the realms of quantum mechanics and deep learning. Tailored for scientists, researchers, and enthusiasts in both quantum physics and artificial intelligence, this book delves into the symbiotic relationship between quantum principles and cutting-edge deep learning techniques. Covering topics such as quantum-inspired algorithms, neural networks, and computational advancements, the book provides a comprehensive overview of how quantum approaches enrich and influence the field of deep learning. With clarity and depth, it serves as an enlightening resource for those intrigued by the dynamic synergy between quantum mechanics and the transformative potential of deep learning.
Publisher: N.B. Singh
ISBN:
Category : Computers
Languages : en
Pages : 306
Book Description
"From Schrödinger's Equation to Deep Learning: A Quantum Approach" offers a captivating exploration that bridges the realms of quantum mechanics and deep learning. Tailored for scientists, researchers, and enthusiasts in both quantum physics and artificial intelligence, this book delves into the symbiotic relationship between quantum principles and cutting-edge deep learning techniques. Covering topics such as quantum-inspired algorithms, neural networks, and computational advancements, the book provides a comprehensive overview of how quantum approaches enrich and influence the field of deep learning. With clarity and depth, it serves as an enlightening resource for those intrigued by the dynamic synergy between quantum mechanics and the transformative potential of deep learning.
Quantum Machine Learning
Author: Peter Wittek
Publisher: Academic Press
ISBN: 0128010991
Category : Science
Languages : en
Pages : 176
Book Description
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research
Publisher: Academic Press
ISBN: 0128010991
Category : Science
Languages : en
Pages : 176
Book Description
Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research
Machine Learning - A Journey To Deep Learning: With Exercises And Answers
Author: Andreas Miroslaus Wichert
Publisher: World Scientific
ISBN: 9811234078
Category : Computers
Languages : en
Pages : 641
Book Description
This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives — the statistical perspective, the artificial neural network perspective and the deep learning methodology.The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students.Related Link(s)
Publisher: World Scientific
ISBN: 9811234078
Category : Computers
Languages : en
Pages : 641
Book Description
This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives — the statistical perspective, the artificial neural network perspective and the deep learning methodology.The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students.Related Link(s)