Author: Hidetoshi Marubayashi
Publisher: Springer
ISBN: 3642311520
Category : Mathematics
Languages : en
Pages : 225
Book Description
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
Prime Divisors and Noncommutative Valuation Theory
Author: Hidetoshi Marubayashi
Publisher: Springer
ISBN: 3642311520
Category : Mathematics
Languages : en
Pages : 225
Book Description
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
Publisher: Springer
ISBN: 3642311520
Category : Mathematics
Languages : en
Pages : 225
Book Description
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
Multiplicative Ideal Theory and Factorization Theory
Author: Scott Chapman
Publisher: Springer
ISBN: 331938855X
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22–26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prüfer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.
Publisher: Springer
ISBN: 331938855X
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22–26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prüfer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.
Value Functions on Simple Algebras, and Associated Graded Rings
Author: Jean-Pierre Tignol
Publisher: Springer
ISBN: 3319163604
Category : Mathematics
Languages : en
Pages : 652
Book Description
This monograph is the first book-length treatment of valuation theory on finite-dimensional division algebras, a subject of active and substantial research over the last forty years. Its development was spurred in the last decades of the twentieth century by important advances such as Amitsur's construction of non crossed products and Platonov's solution of the Tannaka-Artin problem. This study is particularly timely because it approaches the subject from the perspective of associated graded structures. This new approach has been developed by the authors in the last few years and has significantly clarified the theory. Various constructions of division algebras are obtained as applications of the theory, such as noncrossed products and indecomposable algebras. In addition, the use of valuation theory in reduced Whitehead group calculations (after Hazrat and Wadsworth) and in essential dimension computations (after Baek and Merkurjev) is showcased. The intended audience consists of graduate students and research mathematicians.
Publisher: Springer
ISBN: 3319163604
Category : Mathematics
Languages : en
Pages : 652
Book Description
This monograph is the first book-length treatment of valuation theory on finite-dimensional division algebras, a subject of active and substantial research over the last forty years. Its development was spurred in the last decades of the twentieth century by important advances such as Amitsur's construction of non crossed products and Platonov's solution of the Tannaka-Artin problem. This study is particularly timely because it approaches the subject from the perspective of associated graded structures. This new approach has been developed by the authors in the last few years and has significantly clarified the theory. Various constructions of division algebras are obtained as applications of the theory, such as noncrossed products and indecomposable algebras. In addition, the use of valuation theory in reduced Whitehead group calculations (after Hazrat and Wadsworth) and in essential dimension computations (after Baek and Merkurjev) is showcased. The intended audience consists of graduate students and research mathematicians.
Algebras, Rings and Modules
Author: Michiel Hazewinkel
Publisher: CRC Press
ISBN: 1482245051
Category : Mathematics
Languages : en
Pages : 384
Book Description
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth centu
Publisher: CRC Press
ISBN: 1482245051
Category : Mathematics
Languages : en
Pages : 384
Book Description
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth centu
Advances in Rings and Modules
Author: Sergio R. López-Permouth
Publisher: American Mathematical Soc.
ISBN: 1470435551
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume, dedicated to Bruno J. Müller, a renowned algebraist, is a collection of papers that provide a snapshot of the diversity of themes and applications that interest algebraists today. The papers highlight the latest progress in ring and module research and present work done on the frontiers of the topics discussed. In addition, selected expository articles are included to give algebraists and other mathematicians, including graduate students, an accessible introduction to areas that may be outside their own expertise.
Publisher: American Mathematical Soc.
ISBN: 1470435551
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume, dedicated to Bruno J. Müller, a renowned algebraist, is a collection of papers that provide a snapshot of the diversity of themes and applications that interest algebraists today. The papers highlight the latest progress in ring and module research and present work done on the frontiers of the topics discussed. In addition, selected expository articles are included to give algebraists and other mathematicians, including graduate students, an accessible introduction to areas that may be outside their own expertise.
Modules over Non-Noetherian Domains
Author: László Fuchs
Publisher: American Mathematical Soc.
ISBN: 0821819631
Category : Mathematics
Languages : en
Pages : 633
Book Description
In this book, the authors present both traditional and modern discoveries in the subject area, concentrating on advanced aspects of the topic. Existing material is studied in detail, including finitely generated modules, projective and injective modules, and the theory of torsion and torsion-free modules. Some topics are treated from a new point of view. Also included are areas not found in current texts, for example, pure-injectivity, divisible modules, uniserial modules, etc. Special emphasis is given to results that are valid over arbitrary domains. The authors concentrate on modules over valuation and Prüfer domains, but also discuss Krull and Matlis domains, h-local, reflexive, and coherent domains. The volume can serve as a standard reference book for specialists working in the area and also is a suitable text for advanced-graduate algebra courses and seminars.
Publisher: American Mathematical Soc.
ISBN: 0821819631
Category : Mathematics
Languages : en
Pages : 633
Book Description
In this book, the authors present both traditional and modern discoveries in the subject area, concentrating on advanced aspects of the topic. Existing material is studied in detail, including finitely generated modules, projective and injective modules, and the theory of torsion and torsion-free modules. Some topics are treated from a new point of view. Also included are areas not found in current texts, for example, pure-injectivity, divisible modules, uniserial modules, etc. Special emphasis is given to results that are valid over arbitrary domains. The authors concentrate on modules over valuation and Prüfer domains, but also discuss Krull and Matlis domains, h-local, reflexive, and coherent domains. The volume can serve as a standard reference book for specialists working in the area and also is a suitable text for advanced-graduate algebra courses and seminars.
Encyclopaedia of Mathematics
Author: M. Hazewinkel
Publisher: Springer
ISBN: 1489937951
Category : Mathematics
Languages : en
Pages : 967
Book Description
Publisher: Springer
ISBN: 1489937951
Category : Mathematics
Languages : en
Pages : 967
Book Description
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 682
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 682
Book Description
Reviews in Number Theory, as Printed in Mathematical Reviews, 1940 Through 1972, Volumes 1-44 Inclusive
Author: William Judson LeVeque
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 488
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 488
Book Description
Multiplicative Theory of Ideals
Author:
Publisher: Academic Press
ISBN: 0080873561
Category : Mathematics
Languages : en
Pages : 317
Book Description
Multiplicative Theory of Ideals
Publisher: Academic Press
ISBN: 0080873561
Category : Mathematics
Languages : en
Pages : 317
Book Description
Multiplicative Theory of Ideals