Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds

Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds PDF Author: Francisco Javier Manjon
Publisher: Springer
ISBN: 9783662521892
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book

Book Description
This book on pressure-induced phase transitions in AB2X4 chalcogenide compounds deals with one important AmBnXp material. The interest in these materials is caused by their properties. The results are discussed for three main groups of structural families: cubic-spinel structures, defective tetragonal structures, and other structures like layered and wurtzite-type modifications. A systematic analysis of the behavior of cubic (spinel), tetragonal (defect chalcopyrites and stannites) and other crystal modifications of AB2X4 compounds under hydrostatic pressure is performed. The behavior of AIIAl2S4, AIIGa2S4, AIIAl2Se4 and AIIGa2Se4 compounds with defective tetragonal structures, compounds with layered and wurtzite structures under hydrostatic pressure and the pressure dependence of the band gap, lattice parameters, interatomic distances, vibrational modes and pressure-induced phase transitions is discussed. Many of these compounds, except oxide spinels, undergo a pressure-induced phase transition towards the rocksalt-type structure. The phase transition is preceded by disorder in the cation sublattice. The dependence of the transition pressure to the rocksalt-type structure as a function of the compound ionicity and the size criterion is analyzed. At high pressures, all ordered-vacancy compounds are found to exhibit a band anticrossing between several conduction bands that leads to a strong decrease of its pressure coefficient and consequently to a strong non-linear pressure dependence of the direct bandgap energy. Theoretical studies of phase transitions in several ordered-vacancy compounds reveal that the existence of ordered vacancies alter the cation-anion bond distances and their compressibilities. The book is written for students, Ph D. students and specialists in materials science, phase transitions and new materials.

Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds

Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds PDF Author: Francisco Javier Manjon
Publisher: Springer
ISBN: 9783662521892
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book

Book Description
This book on pressure-induced phase transitions in AB2X4 chalcogenide compounds deals with one important AmBnXp material. The interest in these materials is caused by their properties. The results are discussed for three main groups of structural families: cubic-spinel structures, defective tetragonal structures, and other structures like layered and wurtzite-type modifications. A systematic analysis of the behavior of cubic (spinel), tetragonal (defect chalcopyrites and stannites) and other crystal modifications of AB2X4 compounds under hydrostatic pressure is performed. The behavior of AIIAl2S4, AIIGa2S4, AIIAl2Se4 and AIIGa2Se4 compounds with defective tetragonal structures, compounds with layered and wurtzite structures under hydrostatic pressure and the pressure dependence of the band gap, lattice parameters, interatomic distances, vibrational modes and pressure-induced phase transitions is discussed. Many of these compounds, except oxide spinels, undergo a pressure-induced phase transition towards the rocksalt-type structure. The phase transition is preceded by disorder in the cation sublattice. The dependence of the transition pressure to the rocksalt-type structure as a function of the compound ionicity and the size criterion is analyzed. At high pressures, all ordered-vacancy compounds are found to exhibit a band anticrossing between several conduction bands that leads to a strong decrease of its pressure coefficient and consequently to a strong non-linear pressure dependence of the direct bandgap energy. Theoretical studies of phase transitions in several ordered-vacancy compounds reveal that the existence of ordered vacancies alter the cation-anion bond distances and their compressibilities. The book is written for students, Ph D. students and specialists in materials science, phase transitions and new materials.

Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds

Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds PDF Author: Francisco Javier Manjon
Publisher: Springer Science & Business Media
ISBN: 3642403670
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book

Book Description
This book on pressure-induced phase transitions in AB2X4 chalcogenide compounds deals with one important AmBnXp material. The interest in these materials is caused by their properties. The results are discussed for three main groups of structural families: cubic-spinel structures, defective tetragonal structures, and other structures like layered and wurtzite-type modifications. A systematic analysis of the behavior of cubic (spinel), tetragonal (defect chalcopyrites and stannites) and other crystal modifications of AB2X4 compounds under hydrostatic pressure is performed. The behavior of AIIAl2S4, AIIGa2S4, AIIAl2Se4 and AIIGa2Se4 compounds with defective tetragonal structures, compounds with layered and wurtzite structures under hydrostatic pressure and the pressure dependence of the band gap, lattice parameters, interatomic distances, vibrational modes and pressure-induced phase transitions is discussed. Many of these compounds, except oxide spinels, undergo a pressure-induced phase transition towards the rocksalt-type structure. The phase transition is preceded by disorder in the cation sublattice. The dependence of the transition pressure to the rocksalt-type structure as a function of the compound ionicity and the size criterion is analyzed. At high pressures, all ordered-vacancy compounds are found to exhibit a band anticrossing between several conduction bands that leads to a strong decrease of its pressure coefficient and consequently to a strong non-linear pressure dependence of the direct bandgap energy. Theoretical studies of phase transitions in several ordered-vacancy compounds reveal that the existence of ordered vacancies alter the cation-anion bond distances and their compressibilities. The book is written for students, Ph D. students and specialists in materials science, phase transitions and new materials.

Nanohybrids in Environmental & Biomedical Applications

Nanohybrids in Environmental & Biomedical Applications PDF Author: Surender Kumar Sharma
Publisher: CRC Press
ISBN: 1351256831
Category : Science
Languages : en
Pages : 396

Get Book

Book Description
Heterostructured nanoparticles have the capability for a broad range of novel and enhanced properties, which leads to appealing biomedical and environmental applications. This timely new book addresses the design and preparation of multiphase nanomaterials with desired size, shape, phase composition, and crystallinity, as well as their current applications. It emphasizes key examples to motivate deeper studies, including nanomaterial-based hyperthermia treatment of cancer, nanohybrids for water purification, nanostructures used in the removal or detection of bioagents from waste water, and so on. Features Presents state of the art research on heterostructured nanomaterials, from their synthesis and physiochemical properties to current environmental and biological applications. Includes details on toxicity and risk assessment of multifunctional nanomaterials. Discusses recent developments and utilization in healthcare by leading experts. Introduces the main features of functionalization of nanomaterials in terms of desired size, shape, phase composition, surface functionalization/coating, toxicity, and geometry. Emphasizes practical applications in the environmental and biomedical sectors.

Structural investigations on some oxides and other chalcogenide...

Structural investigations on some oxides and other chalcogenide... PDF Author: Coenraad Jozef Maria Rooymans
Publisher:
ISBN:
Category :
Languages : en
Pages : 154

Get Book

Book Description


Pressure-Induced Phase Transformations (Volume II).

Pressure-Induced Phase Transformations (Volume II). PDF Author: Daniel Errandonea
Publisher:
ISBN: 9783036585659
Category :
Languages : en
Pages : 0

Get Book

Book Description
The study of phase transitions in materials under high pressure and high temperature is a very active research field. In the last few decades, many important discoveries have been made thanks to the development of experimental techniques and computer simulation methods. Many of these achievements affect various research fields ranging from solid-state physics, chemistry, and materials science to geophysics. They not only involve deepening knowledge on solid-solid phase transitions, but also a better understanding of melting under compression. These modern discoveries, as well as the impact of pressure on structural, chemical, and physical properties, are central to the current Special Issue. Amongst other topics, it places particular emphasis on phase transitions and their effects on different physical properties.

Electrochemistry of Metal Chalcogenides

Electrochemistry of Metal Chalcogenides PDF Author: Mirtat Bouroushian
Publisher: Springer Science & Business Media
ISBN: 3642039677
Category : Science
Languages : en
Pages : 365

Get Book

Book Description
The author provides a unified account of the electrochemical material science of metal chalcogenide (MCh) compounds and alloys with regard to their synthesis, processing and applications. Starting with the chemical fundamentals of the chalcogens and their major compounds, the initial part of the book includes a systematic description of the MCh solids on the basis of the Periodic Table in terms of their structures and key properties. This is followed by a general discussion on the electrochemistry of chalcogen species, and the principles underlying the electrochemical formation of inorganic compounds/alloys. The core of the book offers an insight into available experimental results and inferences regarding the electrochemical preparation and microstructural control of conventional and novel MCh structures. It also aims to survey their photoelectrochemistry, both from a material-oriented point of view and as connected to specific processes such as photocatalysis and solar energy conversion. Finally, the book illustrates the relevance of MCh materials to various applications of electrochemical interest such as (electro)catalysis in fuel cells, energy storage with intercalation electrodes, and ion sensing.

Introduction to Frustrated Magnetism

Introduction to Frustrated Magnetism PDF Author: Claudine Lacroix
Publisher: Springer Science & Business Media
ISBN: 3642105890
Category : Science
Languages : en
Pages : 682

Get Book

Book Description
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.

Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards

Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 348

Get Book

Book Description


The Role of Topology in Materials

The Role of Topology in Materials PDF Author: Sanju Gupta
Publisher: Springer
ISBN: 3319765965
Category : Science
Languages : en
Pages : 297

Get Book

Book Description
This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure–property–function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.

Inorganic Chemistry in Focus III

Inorganic Chemistry in Focus III PDF Author: Gerd Meyer
Publisher: John Wiley & Sons
ISBN: 3527609091
Category : Science
Languages : en
Pages : 375

Get Book

Book Description
Metal clusters are on the brink between molecules and nanoparticles in size. With molecular, nano-scale, metallic as well as non-metallic aspects, metal clusters are a growing, interdisciplinary field with numerous potential applications in chemistry, catalysis, materials and nanotechnology. This third volume in the series of hot topics from inorganic chemistry covers all recent developments in the field of metal clusters, with some 20 contributions providing an in-depth view. The result is a unique perspective, illustrating all facets of this interdisciplinary area: * Inter-electron Repulsion and Irregularities in the Chemistry of Transition Series * Stereochemical Activity of Lone Pairs in Heavier Main Group Element Compounds * How Close to Close Packing? * Forty-Five Years of Praseodymium Diiodide * Centered Zirconium Clusters * Titanium Niobium Oxychlorides * Trinuclear Molybdenum and Tungsten Cluster Chalcogenides * Current State of (B,C,N)-Compounds of Calcium and Lanthanum * Ternary Phases of Lithium with Main-Group and Late-Transition Metals * Polar Intermetallics and Zintl Phases along the Zintl Border * Rare Earth Zintl Phases * Structure-Property Relationships in Intermetallics * Ternary and Quaternary Niobium Arsenide Zintl Phases * The Building Block Approach to Understanding Main-Group-Metal Complex Structures * Cation-Deficient Quaternary Thiospinels * A New Class of Hybrid Materials via Salt Inclusion Synthesis * Layered Perrhenate and Vanadate Hybrid Solids * Hydrogen Bonding in Metal Halides * Syntheses and Catalytic Properties of Titanium Nitride Nanoparticles * Solventless Thermolysis * New Potential Scintillation Materials in Borophosphate Systems. With its didactical emphasis, this volume addresses a wide readership, such that both students and specialists will profit from the expert contributions.