Author: Yu Cao
Publisher: Springer Science & Business Media
ISBN: 1461404452
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Predictive Technology Model for Robust Nanoelectronic Design explains many of the technical mysteries behind the Predictive Technology Model (PTM) that has been adopted worldwide in explorative design research. Through physical derivation and technology extrapolation, PTM is the de-factor device model used in electronic design. This work explains the systematic model development and provides a guide to robust design practice in the presence of variability and reliability issues. Having interacted with multiple leading semiconductor companies and university research teams, the author brings a state-of-the-art perspective on technology scaling to this work and shares insights gained in the practices of device modeling.
Predictive Technology Model for Robust Nanoelectronic Design
Author: Yu Cao
Publisher: Springer Science & Business Media
ISBN: 1461404452
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Predictive Technology Model for Robust Nanoelectronic Design explains many of the technical mysteries behind the Predictive Technology Model (PTM) that has been adopted worldwide in explorative design research. Through physical derivation and technology extrapolation, PTM is the de-factor device model used in electronic design. This work explains the systematic model development and provides a guide to robust design practice in the presence of variability and reliability issues. Having interacted with multiple leading semiconductor companies and university research teams, the author brings a state-of-the-art perspective on technology scaling to this work and shares insights gained in the practices of device modeling.
Publisher: Springer Science & Business Media
ISBN: 1461404452
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Predictive Technology Model for Robust Nanoelectronic Design explains many of the technical mysteries behind the Predictive Technology Model (PTM) that has been adopted worldwide in explorative design research. Through physical derivation and technology extrapolation, PTM is the de-factor device model used in electronic design. This work explains the systematic model development and provides a guide to robust design practice in the presence of variability and reliability issues. Having interacted with multiple leading semiconductor companies and university research teams, the author brings a state-of-the-art perspective on technology scaling to this work and shares insights gained in the practices of device modeling.
FinFET/GAA Modeling for IC Simulation and Design
Author: Yogesh Singh Chauhan
Publisher: Elsevier
ISBN: 0323958230
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
FinFET/GAA Modeling for IC Simulation and Design: Using the BSIM-CMG Standard, Second Edition is the first to book to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, thus providing a step-by-step approach for the efficient extraction of model parameters. With this book, users will learn Why you should use FinFET, The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG), Parameter extraction in BSIM-CMG FinFET circuit design and simulation, and more. - Authored by the lead inventor and developer of FinFET and developers of the BSIM-CMG standard model, providing an expert's insight into the specifications of the standard - A new edition of the original groundbreaking book on the industry-standard FinFET model—BSIM-CMGNew to This Edition - Includes a new chapter providing a comprehensive introduction to GAAFET, including motivations, device concepts, structure, benefits, and the industry standard GAAFET model - Covers the most recent developments in the BSIM-CMG model - Presents an updated RF modeling of FinFET using the BSIM-CMG model including parameter extraction - Includes a new chapter on cryogenic modeling
Publisher: Elsevier
ISBN: 0323958230
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
FinFET/GAA Modeling for IC Simulation and Design: Using the BSIM-CMG Standard, Second Edition is the first to book to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, thus providing a step-by-step approach for the efficient extraction of model parameters. With this book, users will learn Why you should use FinFET, The physics and operation of FinFET Details of the FinFET standard model (BSIM-CMG), Parameter extraction in BSIM-CMG FinFET circuit design and simulation, and more. - Authored by the lead inventor and developer of FinFET and developers of the BSIM-CMG standard model, providing an expert's insight into the specifications of the standard - A new edition of the original groundbreaking book on the industry-standard FinFET model—BSIM-CMGNew to This Edition - Includes a new chapter providing a comprehensive introduction to GAAFET, including motivations, device concepts, structure, benefits, and the industry standard GAAFET model - Covers the most recent developments in the BSIM-CMG model - Presents an updated RF modeling of FinFET using the BSIM-CMG model including parameter extraction - Includes a new chapter on cryogenic modeling
Strain-Engineered MOSFETs
Author: C.K. Maiti
Publisher: CRC Press
ISBN: 1466503475
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in strain-engineered MOSFETS implemented in high-mobility substrates such as, Ge, SiGe, strained-Si, ultrathin germanium-on-insulator platforms, combined with high-k insulators and metal-gate. It covers the materials aspects, principles, and design of advanced devices, fabrication, and applications. It also presents a full technology computer aided design (TCAD) methodology for strain-engineering in Si-CMOS technology involving data flow from process simulation to process variability simulation via device simulation and generation of SPICE process compact models for manufacturing for yield optimization. Microelectronics fabrication is facing serious challenges due to the introduction of new materials in manufacturing and fundamental limitations of nanoscale devices that result in increasing unpredictability in the characteristics of the devices. The down scaling of CMOS technologies has brought about the increased variability of key parameters affecting the performance of integrated circuits. This book provides a single text that combines coverage of the strain-engineered MOSFETS and their modeling using TCAD, making it a tool for process technology development and the design of strain-engineered MOSFETs.
Publisher: CRC Press
ISBN: 1466503475
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in strain-engineered MOSFETS implemented in high-mobility substrates such as, Ge, SiGe, strained-Si, ultrathin germanium-on-insulator platforms, combined with high-k insulators and metal-gate. It covers the materials aspects, principles, and design of advanced devices, fabrication, and applications. It also presents a full technology computer aided design (TCAD) methodology for strain-engineering in Si-CMOS technology involving data flow from process simulation to process variability simulation via device simulation and generation of SPICE process compact models for manufacturing for yield optimization. Microelectronics fabrication is facing serious challenges due to the introduction of new materials in manufacturing and fundamental limitations of nanoscale devices that result in increasing unpredictability in the characteristics of the devices. The down scaling of CMOS technologies has brought about the increased variability of key parameters affecting the performance of integrated circuits. This book provides a single text that combines coverage of the strain-engineered MOSFETS and their modeling using TCAD, making it a tool for process technology development and the design of strain-engineered MOSFETs.
Timing Performance of Nanometer Digital Circuits Under Process Variations
Author: Victor Champac
Publisher: Springer
ISBN: 3319754653
Category : Technology & Engineering
Languages : en
Pages : 195
Book Description
This book discusses the digital design of integrated circuits under process variations, with a focus on design-time solutions. The authors describe a step-by-step methodology, going from logic gates to logic paths to the circuit level. Topics are presented in comprehensively, without overwhelming use of analytical formulations. Emphasis is placed on providing digital designers with understanding of the sources of process variations, their impact on circuit performance and tools for improving their designs to comply with product specifications. Various circuit-level “design hints” are highlighted, so that readers can use then to improve their designs. A special treatment is devoted to unique design issues and the impact of process variations on the performance of FinFET based circuits. This book enables readers to make optimal decisions at design time, toward more efficient circuits, with better yield and higher reliability.
Publisher: Springer
ISBN: 3319754653
Category : Technology & Engineering
Languages : en
Pages : 195
Book Description
This book discusses the digital design of integrated circuits under process variations, with a focus on design-time solutions. The authors describe a step-by-step methodology, going from logic gates to logic paths to the circuit level. Topics are presented in comprehensively, without overwhelming use of analytical formulations. Emphasis is placed on providing digital designers with understanding of the sources of process variations, their impact on circuit performance and tools for improving their designs to comply with product specifications. Various circuit-level “design hints” are highlighted, so that readers can use then to improve their designs. A special treatment is devoted to unique design issues and the impact of process variations on the performance of FinFET based circuits. This book enables readers to make optimal decisions at design time, toward more efficient circuits, with better yield and higher reliability.
On-Chip Power Delivery and Management
Author: Inna P. Vaisband
Publisher: Springer
ISBN: 3319293958
Category : Technology & Engineering
Languages : en
Pages : 750
Book Description
This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.
Publisher: Springer
ISBN: 3319293958
Category : Technology & Engineering
Languages : en
Pages : 750
Book Description
This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.
Innovations in Infrastructure
Author: Dipankar Deb
Publisher: Springer
ISBN: 9811319669
Category : Technology & Engineering
Languages : en
Pages : 623
Book Description
The book covers innovative research and its applications in infrastructure development and related areas. This book discusses the state-of-art development, challenges and unsolved problems in the field of infrastructure/smart development, control engineering, power system infrastructure, smart infrastructure, waste management and renewable energy. The solutions discussed in this book encourage the researchers and IT professionals to put the methods into their practice.
Publisher: Springer
ISBN: 9811319669
Category : Technology & Engineering
Languages : en
Pages : 623
Book Description
The book covers innovative research and its applications in infrastructure development and related areas. This book discusses the state-of-art development, challenges and unsolved problems in the field of infrastructure/smart development, control engineering, power system infrastructure, smart infrastructure, waste management and renewable energy. The solutions discussed in this book encourage the researchers and IT professionals to put the methods into their practice.
Machine Learning and Data Science
Author: Prateek Agrawal
Publisher: John Wiley & Sons
ISBN: 1119775612
Category : Computers
Languages : en
Pages : 276
Book Description
MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.
Publisher: John Wiley & Sons
ISBN: 1119775612
Category : Computers
Languages : en
Pages : 276
Book Description
MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.
Interleaving Concepts for Digital-to-Analog Converters
Author: Christian Schmidt
Publisher: Springer
ISBN: 3658272643
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Modern complementary metal oxide semiconductor (CMOS) digital-to-analog converters (DACs) are limited in their bandwidth due to technological constraints. These limitations can be overcome by parallel DAC architectures, which are called interleaving concepts. Christian Schmidt analyzes the limitations and the potential of two innovative DAC interleaving concepts to provide the basis for a practical implementation: the analog multiplexing DAC (AMUX-DAC) and the frequency interleaving DAC (FI-DAC). He presents analytical and discrete-time models as a theoretical foundation and develops digital signal processing (DSP) algorithms to compensate the analog impairments. Further, he quantifies the impact of various limiting parameters with numerical simulations and verifies both concepts in laboratory experiments. About the Author: Christian Schmidt works at the Fraunhofer Heinrich-Hertz-Institute, Berlin, Germany, on innovative solutions for broadband signal generation in the field of optical communications. The studies for his dissertation were carried out at the Technische Universität Berlin and at the Fraunhofer Heinrich-Hertz-Institute, both Berlin, Germany.
Publisher: Springer
ISBN: 3658272643
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Modern complementary metal oxide semiconductor (CMOS) digital-to-analog converters (DACs) are limited in their bandwidth due to technological constraints. These limitations can be overcome by parallel DAC architectures, which are called interleaving concepts. Christian Schmidt analyzes the limitations and the potential of two innovative DAC interleaving concepts to provide the basis for a practical implementation: the analog multiplexing DAC (AMUX-DAC) and the frequency interleaving DAC (FI-DAC). He presents analytical and discrete-time models as a theoretical foundation and develops digital signal processing (DSP) algorithms to compensate the analog impairments. Further, he quantifies the impact of various limiting parameters with numerical simulations and verifies both concepts in laboratory experiments. About the Author: Christian Schmidt works at the Fraunhofer Heinrich-Hertz-Institute, Berlin, Germany, on innovative solutions for broadband signal generation in the field of optical communications. The studies for his dissertation were carried out at the Technische Universität Berlin and at the Fraunhofer Heinrich-Hertz-Institute, both Berlin, Germany.
Long-Term Reliability of Nanometer VLSI Systems
Author: Sheldon Tan
Publisher: Springer Nature
ISBN: 3030261727
Category : Technology & Engineering
Languages : en
Pages : 487
Book Description
This book provides readers with a detailed reference regarding two of the most important long-term reliability and aging effects on nanometer integrated systems, electromigrations (EM) for interconnect and biased temperature instability (BTI) for CMOS devices. The authors discuss in detail recent developments in the modeling, analysis and optimization of the reliability effects from EM and BTI induced failures at the circuit, architecture and system levels of abstraction. Readers will benefit from a focus on topics such as recently developed, physics-based EM modeling, EM modeling for multi-segment wires, new EM-aware power grid analysis, and system level EM-induced reliability optimization and management techniques. Reviews classic Electromigration (EM) models, as well as existing EM failure models and discusses the limitations of those models; Introduces a dynamic EM model to address transient stress evolution, in which wires are stressed under time-varying current flows, and the EM recovery effects. Also includes new, parameterized equivalent DC current based EM models to address the recovery and transient effects; Presents a cross-layer approach to transistor aging modeling, analysis and mitigation, spanning multiple abstraction levels; Equips readers for EM-induced dynamic reliability management and energy or lifetime optimization techniques, for many-core dark silicon microprocessors, embedded systems, lower power many-core processors and datacenters.
Publisher: Springer Nature
ISBN: 3030261727
Category : Technology & Engineering
Languages : en
Pages : 487
Book Description
This book provides readers with a detailed reference regarding two of the most important long-term reliability and aging effects on nanometer integrated systems, electromigrations (EM) for interconnect and biased temperature instability (BTI) for CMOS devices. The authors discuss in detail recent developments in the modeling, analysis and optimization of the reliability effects from EM and BTI induced failures at the circuit, architecture and system levels of abstraction. Readers will benefit from a focus on topics such as recently developed, physics-based EM modeling, EM modeling for multi-segment wires, new EM-aware power grid analysis, and system level EM-induced reliability optimization and management techniques. Reviews classic Electromigration (EM) models, as well as existing EM failure models and discusses the limitations of those models; Introduces a dynamic EM model to address transient stress evolution, in which wires are stressed under time-varying current flows, and the EM recovery effects. Also includes new, parameterized equivalent DC current based EM models to address the recovery and transient effects; Presents a cross-layer approach to transistor aging modeling, analysis and mitigation, spanning multiple abstraction levels; Equips readers for EM-induced dynamic reliability management and energy or lifetime optimization techniques, for many-core dark silicon microprocessors, embedded systems, lower power many-core processors and datacenters.
The Predictive Technology Model in the Late Silicon Era and Beyond
Author: Yu Cao
Publisher: Now Publishers Inc
ISBN: 1601983166
Category : Computers
Languages : en
Pages : 111
Book Description
The aggressive scaling of CMOS technology has inevitably led to vastly increased power dissipation, process variability and reliability degradation, posing tremendous challenges to robust circuit design. To continue the success of integrated circuits, advanced design research must start in parallel with or even ahead of technology development. This new paradigm requires the Predictive Technology Model (PTM) for future technology generations, including nanoscale CMOS and post-silicon devices. This paper presents a comprehensive set of predictive modeling developments. Starting from the PTM of traditional CMOS devices, it extends to CMOS alternatives at the end of the silicon roadmap, such as strained Si, high-k/metal gate, and FinFET devices. The impact of process variation and the aging effect is further captured by modeling the device parameters under the influence. Beyond the silicon roadmap, the PTM outreaches to revolutionary devices, especially carbon-based transistor and interconnect, in order to support explorative design research. Overall, these predictive device models enable early stage design exploration with increasing technology diversity, helping shed light on the opportunities and challenges in the nanoelectronics era.
Publisher: Now Publishers Inc
ISBN: 1601983166
Category : Computers
Languages : en
Pages : 111
Book Description
The aggressive scaling of CMOS technology has inevitably led to vastly increased power dissipation, process variability and reliability degradation, posing tremendous challenges to robust circuit design. To continue the success of integrated circuits, advanced design research must start in parallel with or even ahead of technology development. This new paradigm requires the Predictive Technology Model (PTM) for future technology generations, including nanoscale CMOS and post-silicon devices. This paper presents a comprehensive set of predictive modeling developments. Starting from the PTM of traditional CMOS devices, it extends to CMOS alternatives at the end of the silicon roadmap, such as strained Si, high-k/metal gate, and FinFET devices. The impact of process variation and the aging effect is further captured by modeling the device parameters under the influence. Beyond the silicon roadmap, the PTM outreaches to revolutionary devices, especially carbon-based transistor and interconnect, in order to support explorative design research. Overall, these predictive device models enable early stage design exploration with increasing technology diversity, helping shed light on the opportunities and challenges in the nanoelectronics era.