Author: Robert Stevens
Publisher: CRC Press
ISBN: 1003806244
Category : Computers
Languages : en
Pages : 99
Book Description
Nearly all our safety data collection and reporting systems are backwardlooking: incident reports; dashboards; compliance monitoring systems; and so on. This book shows how we can use safety data in a forward-looking, predictive sense. Predictive Safety Analytics: Reducing Risk through Modeling and Machine Learning contains real use cases where organizations have reduced incidents by employing predictive analytics to foresee and mitigate future risks. It discusses how Predictive Safety Analytics is an opportunity to break through the plateau problem where safety rate improvements have stagnated in many organizations. The book presents how the use of data, coupled with advanced analytical techniques, including machine learning, has become a proven and successful innovation. Emphasis is placed on how the book can “meet you where you are” by illuminating a path to get there, starting with simple data the organization likely already has. Highlights of the book are the real examples and case studies that will assist in generating thoughts and ideas for what might work for individual readers and how they can adapt the information to their particular situations. This book is written for professionals and researchers in system reliability, risk and safety assessment, quality control, operational managers in selected industries, data scientists, and ML engineers. Students taking courses in these areas will also find this book of interest to them.
Predictive Safety Analytics
Highway Safety Analytics and Modeling
Author: Dominique Lord
Publisher: Elsevier
ISBN: 0128168196
Category : Law
Languages : en
Pages : 504
Book Description
Highway Safety Analytics and Modeling comprehensively covers the key elements needed to make effective transportation engineering and policy decisions based on highway safety data analysis in a single. reference. The book includes all aspects of the decision-making process, from collecting and assembling data to developing models and evaluating analysis results. It discusses the challenges of working with crash and naturalistic data, identifies problems and proposes well-researched methods to solve them. Finally, the book examines the nuances associated with safety data analysis and shows how to best use the information to develop countermeasures, policies, and programs to reduce the frequency and severity of traffic crashes. - Complements the Highway Safety Manual by the American Association of State Highway and Transportation Officials - Provides examples and case studies for most models and methods - Includes learning aids such as online data, examples and solutions to problems
Publisher: Elsevier
ISBN: 0128168196
Category : Law
Languages : en
Pages : 504
Book Description
Highway Safety Analytics and Modeling comprehensively covers the key elements needed to make effective transportation engineering and policy decisions based on highway safety data analysis in a single. reference. The book includes all aspects of the decision-making process, from collecting and assembling data to developing models and evaluating analysis results. It discusses the challenges of working with crash and naturalistic data, identifies problems and proposes well-researched methods to solve them. Finally, the book examines the nuances associated with safety data analysis and shows how to best use the information to develop countermeasures, policies, and programs to reduce the frequency and severity of traffic crashes. - Complements the Highway Safety Manual by the American Association of State Highway and Transportation Officials - Provides examples and case studies for most models and methods - Includes learning aids such as online data, examples and solutions to problems
Practical Predictive Analytics and Decisioning Systems for Medicine
Author: Gary D. Miner
Publisher: Academic Press
ISBN: 012411640X
Category : Computers
Languages : en
Pages : 1111
Book Description
With the advent of electronic medical records years ago and the increasing capabilities of computers, our healthcare systems are sitting on growing mountains of data. Not only does the data grow from patient volume but the type of data we store is also growing exponentially. Practical Predictive Analytics and Decisioning Systems for Medicine provides research tools to analyze these large amounts of data and addresses some of the most pressing issues and challenges where data integrity is compromised: patient safety, patient communication, and patient information. Through the use of predictive analytic models and applications, this book is an invaluable resource to predict more accurate outcomes to help improve quality care in the healthcare and medical industries in the most cost–efficient manner.Practical Predictive Analytics and Decisioning Systems for Medicine provides the basics of predictive analytics for those new to the area and focuses on general philosophy and activities in the healthcare and medical system. It explains why predictive models are important, and how they can be applied to the predictive analysis process in order to solve real industry problems. Researchers need this valuable resource to improve data analysis skills and make more accurate and cost-effective decisions. - Includes models and applications of predictive analytics why they are important and how they can be used in healthcare and medical research - Provides real world step-by-step tutorials to help beginners understand how the predictive analytic processes works and to successfully do the computations - Demonstrates methods to help sort through data to make better observations and allow you to make better predictions
Publisher: Academic Press
ISBN: 012411640X
Category : Computers
Languages : en
Pages : 1111
Book Description
With the advent of electronic medical records years ago and the increasing capabilities of computers, our healthcare systems are sitting on growing mountains of data. Not only does the data grow from patient volume but the type of data we store is also growing exponentially. Practical Predictive Analytics and Decisioning Systems for Medicine provides research tools to analyze these large amounts of data and addresses some of the most pressing issues and challenges where data integrity is compromised: patient safety, patient communication, and patient information. Through the use of predictive analytic models and applications, this book is an invaluable resource to predict more accurate outcomes to help improve quality care in the healthcare and medical industries in the most cost–efficient manner.Practical Predictive Analytics and Decisioning Systems for Medicine provides the basics of predictive analytics for those new to the area and focuses on general philosophy and activities in the healthcare and medical system. It explains why predictive models are important, and how they can be applied to the predictive analysis process in order to solve real industry problems. Researchers need this valuable resource to improve data analysis skills and make more accurate and cost-effective decisions. - Includes models and applications of predictive analytics why they are important and how they can be used in healthcare and medical research - Provides real world step-by-step tutorials to help beginners understand how the predictive analytic processes works and to successfully do the computations - Demonstrates methods to help sort through data to make better observations and allow you to make better predictions
Predictive Analytics
Author: Eric Siegel
Publisher: John Wiley & Sons
ISBN: 1119145686
Category : Business & Economics
Languages : en
Pages : 368
Book Description
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.
Publisher: John Wiley & Sons
ISBN: 1119145686
Category : Business & Economics
Languages : en
Pages : 368
Book Description
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.
Applied Predictive Analytics
Author: Dean Abbott
Publisher: John Wiley & Sons
ISBN: 111872769X
Category : Computers
Languages : en
Pages : 471
Book Description
Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.
Publisher: John Wiley & Sons
ISBN: 111872769X
Category : Computers
Languages : en
Pages : 471
Book Description
Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.
Predictive Analytics for Human Resources
Author: Jac Fitz-enz
Publisher: John Wiley & Sons
ISBN: 1118893670
Category : Business & Economics
Languages : en
Pages : 180
Book Description
Create and run a human resource analytics project with confidence For any human resource professional that wants to harness the power of analytics, this essential resource answers the questions: "Where do I start?" and "What tools are available?" Predictive Analytics for Human Resources is designed to answer these and other vital questions. The book explains the basics of every business—the vision, the brand, and the culture, and shows how predictive analytics supports them. The authors put the focus on the fundamentals of predictability and include a framework of logical questions to help set up an analytic program or project, then follow up by offering a clear explanation of statistical applications. Predictive Analytics for Human Resources is a how-to guide filled with practical and targeted advice. The book starts with the basic idea of engaging in predictive analytics and walks through case simulations showing statistical examples. In addition, this important resource addresses the topics of internal coaching, mentoring, and sponsoring and includes information on how to recruit a sponsor. In the book, you'll find: A comprehensive guide to developing and implementing a human resource analytics project Illustrative examples that show how to go to market, develop a leadership model, and link it to financial targets through causal modeling Explanations of the ten steps required in building an analytics function How to add value through analysis of systems such as staffing, training, and retention For anyone who wants to launch an analytics project or program for HR, this complete guide provides the information and instruction to get started the right way.
Publisher: John Wiley & Sons
ISBN: 1118893670
Category : Business & Economics
Languages : en
Pages : 180
Book Description
Create and run a human resource analytics project with confidence For any human resource professional that wants to harness the power of analytics, this essential resource answers the questions: "Where do I start?" and "What tools are available?" Predictive Analytics for Human Resources is designed to answer these and other vital questions. The book explains the basics of every business—the vision, the brand, and the culture, and shows how predictive analytics supports them. The authors put the focus on the fundamentals of predictability and include a framework of logical questions to help set up an analytic program or project, then follow up by offering a clear explanation of statistical applications. Predictive Analytics for Human Resources is a how-to guide filled with practical and targeted advice. The book starts with the basic idea of engaging in predictive analytics and walks through case simulations showing statistical examples. In addition, this important resource addresses the topics of internal coaching, mentoring, and sponsoring and includes information on how to recruit a sponsor. In the book, you'll find: A comprehensive guide to developing and implementing a human resource analytics project Illustrative examples that show how to go to market, develop a leadership model, and link it to financial targets through causal modeling Explanations of the ten steps required in building an analytics function How to add value through analysis of systems such as staffing, training, and retention For anyone who wants to launch an analytics project or program for HR, this complete guide provides the information and instruction to get started the right way.
Fundamentals of Machine Learning for Predictive Data Analytics, second edition
Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853
Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853
Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Competing on Analytics
Author: Thomas H. Davenport
Publisher: Harvard Business Press
ISBN: 1422156303
Category : Business & Economics
Languages : en
Pages : 243
Book Description
You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics.
Publisher: Harvard Business Press
ISBN: 1422156303
Category : Business & Economics
Languages : en
Pages : 243
Book Description
You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics.
Predictive HR Analytics
Author: Dr Martin R. Edwards
Publisher: Kogan Page Publishers
ISBN: 0749484454
Category : Business & Economics
Languages : en
Pages : 537
Book Description
HR metrics and organizational people-related data are an invaluable source of information from which to identify trends and patterns in order to make effective business decisions. But HR practitioners often lack the statistical and analytical know-how to fully harness the potential of this data. Predictive HR Analytics provides a clear, accessible framework for understanding and working with people analytics and advanced statistical techniques. Using the statistical package SPSS (with R syntax included), it takes readers step by step through worked examples, showing them how to carry out and interpret analyses of HR data in areas such as employee engagement, performance and turnover. Readers are shown how to use the results to enable them to develop effective evidence-based HR strategies. This second edition has been updated to include the latest material on machine learning, biased algorithms, data protection and GDPR considerations, a new example using survival analyses, and up-to-the-minute screenshots and examples with SPSS version 25. It is supported by a new appendix showing main R coding, and online resources consisting of SPSS and Excel data sets and R syntax with worked case study examples.
Publisher: Kogan Page Publishers
ISBN: 0749484454
Category : Business & Economics
Languages : en
Pages : 537
Book Description
HR metrics and organizational people-related data are an invaluable source of information from which to identify trends and patterns in order to make effective business decisions. But HR practitioners often lack the statistical and analytical know-how to fully harness the potential of this data. Predictive HR Analytics provides a clear, accessible framework for understanding and working with people analytics and advanced statistical techniques. Using the statistical package SPSS (with R syntax included), it takes readers step by step through worked examples, showing them how to carry out and interpret analyses of HR data in areas such as employee engagement, performance and turnover. Readers are shown how to use the results to enable them to develop effective evidence-based HR strategies. This second edition has been updated to include the latest material on machine learning, biased algorithms, data protection and GDPR considerations, a new example using survival analyses, and up-to-the-minute screenshots and examples with SPSS version 25. It is supported by a new appendix showing main R coding, and online resources consisting of SPSS and Excel data sets and R syntax with worked case study examples.
Predictive Analytics For Dummies
Author: Anasse Bari
Publisher: John Wiley & Sons
ISBN: 1118729412
Category : Business & Economics
Languages : en
Pages : 371
Book Description
Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies.
Publisher: John Wiley & Sons
ISBN: 1118729412
Category : Business & Economics
Languages : en
Pages : 371
Book Description
Combine business sense, statistics, and computers in a new and intuitive way, thanks to Big Data Predictive analytics is a branch of data mining that helps predict probabilities and trends. Predictive Analytics For Dummies explores the power of predictive analytics and how you can use it to make valuable predictions for your business, or in fields such as advertising, fraud detection, politics, and others. This practical book does not bog you down with loads of mathematical or scientific theory, but instead helps you quickly see how to use the right algorithms and tools to collect and analyze data and apply it to make predictions. Topics include using structured and unstructured data, building models, creating a predictive analysis roadmap, setting realistic goals, budgeting, and much more. Shows readers how to use Big Data and data mining to discover patterns and make predictions for tech-savvy businesses Helps readers see how to shepherd predictive analytics projects through their companies Explains just enough of the science and math, but also focuses on practical issues such as protecting project budgets, making good presentations, and more Covers nuts-and-bolts topics including predictive analytics basics, using structured and unstructured data, data mining, and algorithms and techniques for analyzing data Also covers clustering, association, and statistical models; creating a predictive analytics roadmap; and applying predictions to the web, marketing, finance, health care, and elsewhere Propose, produce, and protect predictive analytics projects through your company with Predictive Analytics For Dummies.