Predictive Approaches to Control of Complex Systems

Predictive Approaches to Control of Complex Systems PDF Author: Gorazd Karer
Publisher: Springer
ISBN: 3642339476
Category : Technology & Engineering
Languages : en
Pages : 261

Get Book Here

Book Description
A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequently encountered complex dynamical phenomena and are practically applicable in the proposed predictive control approaches. Furthermore, unsupervised learning methods that can be used for complex-system identification are treated. Finally, several useful predictive control algorithms for complex systems are proposed and their particular advantages and drawbacks are discussed. The presented modeling, identification and control approaches are complemented by illustrative examples. The book is aimed towards researches and postgraduate students interested in modeling, identification and control, as well as towards control engineers needing practically usable advanced control methods for complex systems.

Predictive Approaches to Control of Complex Systems

Predictive Approaches to Control of Complex Systems PDF Author: Gorazd Karer
Publisher: Springer
ISBN: 9783642339486
Category : Technology & Engineering
Languages : en
Pages : 260

Get Book Here

Book Description
A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequently encountered complex dynamical phenomena and are practically applicable in the proposed predictive control approaches. Furthermore, unsupervised learning methods that can be used for complex-system identification are treated. Finally, several useful predictive control algorithms for complex systems are proposed and their particular advantages and drawbacks are discussed. The presented modeling, identification and control approaches are complemented by illustrative examples. The book is aimed towards researches and postgraduate students interested in modeling, identification and control, as well as towards control engineers needing practically usable advanced control methods for complex systems.

Control of Complex Systems

Control of Complex Systems PDF Author: Karl J. Aström
Publisher: Springer Science & Business Media
ISBN: 1447103491
Category : Technology & Engineering
Languages : en
Pages : 485

Get Book Here

Book Description
The world of artificial systems is reaching complexity levels that es cape human understanding. Surface traffic, electricity distribution, air planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimulating scientific research. ESF is a European asso ciation of more than 60 leading national science agencies spanning more than 20 countries. ESF covers has standing committees in Medical Sci ences, Life and Environmental Sciences, Physical and Engineering Sci ences, Humanities and Social Sciences. The COSY program was ESF's first activity in the Engineering Sciences. The program run for a period of five years starting January 1995.

Model Predictive Control in the Process Industry

Model Predictive Control in the Process Industry PDF Author: Eduardo F. Camacho
Publisher: Springer Science & Business Media
ISBN: 1447130081
Category : Technology & Engineering
Languages : en
Pages : 250

Get Book Here

Book Description
Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.

Predictive Control for Linear and Hybrid Systems

Predictive Control for Linear and Hybrid Systems PDF Author: Francesco Borrelli
Publisher: Cambridge University Press
ISBN: 1107016886
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).

Distributed Model Predictive Control Made Easy

Distributed Model Predictive Control Made Easy PDF Author: José M. Maestre
Publisher: Springer Science & Business Media
ISBN: 9400770065
Category : Technology & Engineering
Languages : en
Pages : 601

Get Book Here

Book Description
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.

Complex Systems and Computational Biology Approaches to Acute Inflammation

Complex Systems and Computational Biology Approaches to Acute Inflammation PDF Author: Yoram Vodovotz
Publisher: Springer Nature
ISBN: 3030565106
Category : Medical
Languages : en
Pages : 307

Get Book Here

Book Description
This second edition expands upon and updates the vital research covered in its predecessor, by presenting state-of-the-art multidisciplinary and systems-oriented approaches to complex diseases arising from and driven by the acute inflammatory response. The chapters in this volume provide an introduction to different types of computational modeling, and how these methods can be applied to specific inflammatory diseases, with a focus on providing readers a roadmap for integrating advanced mathematical and computational techniques with traditional experimental methods. In this second edition, we cover both well-established and emerging modeling methods, especially state-of-the-art machine learning approaches and the integration of data-driven and mechanistic modeling. This volume introduces the concept of Model-based Precision Medicine as an alternative approach to the current view of Precision Medicine, based on leveraging mechanistic computational modeling to decrease cost while increasing the information value of the data being obtained. By presenting the role of computational modeling as an integrated component of the research process, Complex Systems and Computational Biology Approaches to Acute Inflammation: A Framework for Model-based Precision Medicine offers a window into the recent past, the present, and the future of computationally-augmented biomedical research.

Control and Optimization Methods for Complex System Resilience

Control and Optimization Methods for Complex System Resilience PDF Author: Chao Zhai
Publisher: Springer Nature
ISBN: 9819930537
Category : Technology & Engineering
Languages : en
Pages : 218

Get Book Here

Book Description
This book provides a systematic framework to enhance the ability of complex dynamical systems in risk identification, security assessment, system protection, and recovery with the assistance of advanced control and optimization technologies. By treating external disturbances as control inputs, optimal control approach is employed to identify disruptive disturbances, and online security assessment is conducted with Gaussian process and converse Lyapunov function. Model predictive approach and distributed optimization strategy are adopted to protect the complex system against critical contingencies. Moreover, the reinforcement learning method ensures the efficient restoration of complex systems from severe disruptions. This book is meant to be read and studied by researchers and graduates. It offers unique insights and practical methodology into designing and analyzing complex dynamical systems for resilience elevation.

Model Predictive Control

Model Predictive Control PDF Author: Eduardo F. Camacho
Publisher: Springer Science & Business Media
ISBN: 0857293982
Category : Technology & Engineering
Languages : en
Pages : 405

Get Book Here

Book Description
The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.

Automotive Model Predictive Control

Automotive Model Predictive Control PDF Author: Luigi Del Re
Publisher: Springer
ISBN: 1849960712
Category : Technology & Engineering
Languages : en
Pages : 291

Get Book Here

Book Description
Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control.