Author: Alboukadel Kassambara
Publisher:
ISBN: 9781712330883
Category :
Languages : en
Pages : 206
Book Description
This R Statistics book provides a solid step-by-step practical guide to statistical inference for comparing groups means using the R software. Additionally, we developed an R package named rstatix, which provides a simple and intuitive pipe-friendly framework, coherent with the `tidyverse` design philosophy, for computing the most common R statistical analyses, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses, outliers identification and more. This book is designed to get you doing the statistical tests in R as quick as possible. The book focuses on implementation and understanding of the methods, without having to struggle through pages of mathematical proofs. You will be guided through the steps of summarizing and visualizing the data, checking the assumptions and performing statistical tests in R, interpreting and reporting the results. The main parts of the book include: PART I. Statistical tests and assumptions for the comparison of groups means; PART II. comparing two means (t-test, Wilcoxon test, Sign test); PART III. comparing multiple means (ANOVA - Analysis of Variance for independent measures, repeated measures ANOVA, mixed ANOVA, ANCOVA and MANOVA, Kruskal-Wallis test and Friedman test).
Practical Statistics in R for Comparing Groups
Author: Alboukadel Kassambara
Publisher:
ISBN: 9781712330883
Category :
Languages : en
Pages : 206
Book Description
This R Statistics book provides a solid step-by-step practical guide to statistical inference for comparing groups means using the R software. Additionally, we developed an R package named rstatix, which provides a simple and intuitive pipe-friendly framework, coherent with the `tidyverse` design philosophy, for computing the most common R statistical analyses, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses, outliers identification and more. This book is designed to get you doing the statistical tests in R as quick as possible. The book focuses on implementation and understanding of the methods, without having to struggle through pages of mathematical proofs. You will be guided through the steps of summarizing and visualizing the data, checking the assumptions and performing statistical tests in R, interpreting and reporting the results. The main parts of the book include: PART I. Statistical tests and assumptions for the comparison of groups means; PART II. comparing two means (t-test, Wilcoxon test, Sign test); PART III. comparing multiple means (ANOVA - Analysis of Variance for independent measures, repeated measures ANOVA, mixed ANOVA, ANCOVA and MANOVA, Kruskal-Wallis test and Friedman test).
Publisher:
ISBN: 9781712330883
Category :
Languages : en
Pages : 206
Book Description
This R Statistics book provides a solid step-by-step practical guide to statistical inference for comparing groups means using the R software. Additionally, we developed an R package named rstatix, which provides a simple and intuitive pipe-friendly framework, coherent with the `tidyverse` design philosophy, for computing the most common R statistical analyses, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses, outliers identification and more. This book is designed to get you doing the statistical tests in R as quick as possible. The book focuses on implementation and understanding of the methods, without having to struggle through pages of mathematical proofs. You will be guided through the steps of summarizing and visualizing the data, checking the assumptions and performing statistical tests in R, interpreting and reporting the results. The main parts of the book include: PART I. Statistical tests and assumptions for the comparison of groups means; PART II. comparing two means (t-test, Wilcoxon test, Sign test); PART III. comparing multiple means (ANOVA - Analysis of Variance for independent measures, repeated measures ANOVA, mixed ANOVA, ANCOVA and MANOVA, Kruskal-Wallis test and Friedman test).
Learning Statistics with R
Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Practical Statistics
Author: David Kremelberg
Publisher: SAGE Publications
ISBN: 150631791X
Category : Social Science
Languages : en
Pages : 529
Book Description
Making statistics—and statistical software—accessible and rewarding This book provides readers with step-by-step guidance on running a wide variety of statistical analyses in IBM® SPSS® Statistics, Stata, and other programs. Author David Kremelberg begins his user-friendly text by covering charts and graphs through regression, time-series analysis, and factor analysis. He provides a background of the method, then explains how to run these tests in IBM SPSS and Stata. He then progresses to more advanced kinds of statistics such as HLM and SEM, where he describes the tests and explains how to run these tests in their appropriate software including HLM and AMOS. This is an invaluable guide for upper-level undergraduate and graduate students across the social and behavioral sciences who need assistance in understanding the various statistical packages.
Publisher: SAGE Publications
ISBN: 150631791X
Category : Social Science
Languages : en
Pages : 529
Book Description
Making statistics—and statistical software—accessible and rewarding This book provides readers with step-by-step guidance on running a wide variety of statistical analyses in IBM® SPSS® Statistics, Stata, and other programs. Author David Kremelberg begins his user-friendly text by covering charts and graphs through regression, time-series analysis, and factor analysis. He provides a background of the method, then explains how to run these tests in IBM SPSS and Stata. He then progresses to more advanced kinds of statistics such as HLM and SEM, where he describes the tests and explains how to run these tests in their appropriate software including HLM and AMOS. This is an invaluable guide for upper-level undergraduate and graduate students across the social and behavioral sciences who need assistance in understanding the various statistical packages.
Using R for Introductory Statistics
Author: John Verzani
Publisher: CRC Press
ISBN: 1315360306
Category : Computers
Languages : en
Pages : 522
Book Description
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.
Publisher: CRC Press
ISBN: 1315360306
Category : Computers
Languages : en
Pages : 522
Book Description
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.
The Book of R
Author: Tilman M. Davies
Publisher: No Starch Press
ISBN: 1593276516
Category : Computers
Languages : en
Pages : 833
Book Description
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Publisher: No Starch Press
ISBN: 1593276516
Category : Computers
Languages : en
Pages : 833
Book Description
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
A Handbook of Statistical Analyses Using R, Second Edition
Author: Torsten Hothorn
Publisher: Chapman and Hall/CRC
ISBN: 9781420079333
Category : Mathematics
Languages : en
Pages : 376
Book Description
A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.
Publisher: Chapman and Hall/CRC
ISBN: 9781420079333
Category : Mathematics
Languages : en
Pages : 376
Book Description
A Proven Guide for Easily Using R to Effectively Analyze Data Like its bestselling predecessor, A Handbook of Statistical Analyses Using R, Second Edition provides a guide to data analysis using the R system for statistical computing. Each chapter includes a brief account of the relevant statistical background, along with appropriate references. New to the Second Edition New chapters on graphical displays, generalized additive models, and simultaneous inference A new section on generalized linear mixed models that completes the discussion on the analysis of longitudinal data where the response variable does not have a normal distribution New examples and additional exercises in several chapters A new version of the HSAUR package (HSAUR2), which is available from CRAN This edition continues to offer straightforward descriptions of how to conduct a range of statistical analyses using R, from simple inference to recursive partitioning to cluster analysis. Focusing on how to use R and interpret the results, it provides students and researchers in many disciplines with a self-contained means of using R to analyze their data.
Applying Contemporary Statistical Techniques
Author: Rand R. Wilcox
Publisher: Gulf Professional Publishing
ISBN: 9780127515410
Category : Mathematics
Languages : en
Pages : 688
Book Description
Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible. Highlights: * Assumes no previous training in statistics * Explains when and why modern methods provide more accurate results * Provides simple descriptions of when and why conventional methods can be highly unsatisfactory * Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques "The book is quite unique in that it offers a lot of up-to-date statistical tools. No other book at this level comes close in this aspect." Xuming He -University of Illinois, Urbana
Publisher: Gulf Professional Publishing
ISBN: 9780127515410
Category : Mathematics
Languages : en
Pages : 688
Book Description
Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible. Highlights: * Assumes no previous training in statistics * Explains when and why modern methods provide more accurate results * Provides simple descriptions of when and why conventional methods can be highly unsatisfactory * Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques "The book is quite unique in that it offers a lot of up-to-date statistical tools. No other book at this level comes close in this aspect." Xuming He -University of Illinois, Urbana
Research Methods and Statistics for Public and Nonprofit Administrators
Author: Masami Nishishiba
Publisher: SAGE Publications
ISBN: 1483301419
Category : Political Science
Languages : en
Pages : 393
Book Description
Research Methods and Statistics for Public and Nonprofit Administrators: A Practical Guide is a comprehensive, easy-to-read, core text that thoroughly prepares readers to apply research methods and data analysis to the professional environments of public and non-profit administration. The authors expertly incorporate original case examples to demonstrate concepts using “real actors,” facing specific scenarios, in which research methods must be applied. This unique approach—presented in language accessible to both students new to research as well as current practitioners—guides the reader in fully understanding the research options detailed throughout the text.
Publisher: SAGE Publications
ISBN: 1483301419
Category : Political Science
Languages : en
Pages : 393
Book Description
Research Methods and Statistics for Public and Nonprofit Administrators: A Practical Guide is a comprehensive, easy-to-read, core text that thoroughly prepares readers to apply research methods and data analysis to the professional environments of public and non-profit administration. The authors expertly incorporate original case examples to demonstrate concepts using “real actors,” facing specific scenarios, in which research methods must be applied. This unique approach—presented in language accessible to both students new to research as well as current practitioners—guides the reader in fully understanding the research options detailed throughout the text.
The R Book
Author: Michael J. Crawley
Publisher: John Wiley & Sons
ISBN: 9780470515068
Category : Mathematics
Languages : en
Pages : 953
Book Description
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Publisher: John Wiley & Sons
ISBN: 9780470515068
Category : Mathematics
Languages : en
Pages : 953
Book Description
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Quantifying the User Experience
Author: Jeff Sauro
Publisher: Morgan Kaufmann
ISBN: 0128025484
Category : Computers
Languages : en
Pages : 374
Book Description
Quantifying the User Experience: Practical Statistics for User Research, Second Edition, provides practitioners and researchers with the information they need to confidently quantify, qualify, and justify their data. The book presents a practical guide on how to use statistics to solve common quantitative problems that arise in user research. It addresses questions users face every day, including, Is the current product more usable than our competition? Can we be sure at least 70% of users can complete the task on their first attempt? How long will it take users to purchase products on the website? This book provides a foundation for statistical theories and the best practices needed to apply them. The authors draw on decades of statistical literature from human factors, industrial engineering, and psychology, as well as their own published research, providing both concrete solutions (Excel formulas and links to their own web-calculators), along with an engaging discussion on the statistical reasons why tests work and how to effectively communicate results. Throughout this new edition, users will find updates on standardized usability questionnaires, a new chapter on general linear modeling (correlation, regression, and analysis of variance), with updated examples and case studies throughout. - Completely updated to provide practical guidance on solving usability testing problems with statistics for any project, including those using Six Sigma practices - Includes new and revised information on standardized usability questionnaires - Includes a completely new chapter introducing correlation, regression, and analysis of variance - Shows practitioners which test to use, why they work, and best practices for application, along with easy-to-use Excel formulas and web-calculators for analyzing data - Recommends ways for researchers and practitioners to communicate results to stakeholders in plain English
Publisher: Morgan Kaufmann
ISBN: 0128025484
Category : Computers
Languages : en
Pages : 374
Book Description
Quantifying the User Experience: Practical Statistics for User Research, Second Edition, provides practitioners and researchers with the information they need to confidently quantify, qualify, and justify their data. The book presents a practical guide on how to use statistics to solve common quantitative problems that arise in user research. It addresses questions users face every day, including, Is the current product more usable than our competition? Can we be sure at least 70% of users can complete the task on their first attempt? How long will it take users to purchase products on the website? This book provides a foundation for statistical theories and the best practices needed to apply them. The authors draw on decades of statistical literature from human factors, industrial engineering, and psychology, as well as their own published research, providing both concrete solutions (Excel formulas and links to their own web-calculators), along with an engaging discussion on the statistical reasons why tests work and how to effectively communicate results. Throughout this new edition, users will find updates on standardized usability questionnaires, a new chapter on general linear modeling (correlation, regression, and analysis of variance), with updated examples and case studies throughout. - Completely updated to provide practical guidance on solving usability testing problems with statistics for any project, including those using Six Sigma practices - Includes new and revised information on standardized usability questionnaires - Includes a completely new chapter introducing correlation, regression, and analysis of variance - Shows practitioners which test to use, why they work, and best practices for application, along with easy-to-use Excel formulas and web-calculators for analyzing data - Recommends ways for researchers and practitioners to communicate results to stakeholders in plain English