Practical Geometry Algorithms

Practical Geometry Algorithms PDF Author: Daniel Sunday, PhD
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description
This book presents practical geometry algorithms with computationally fast C++ code implementations. It covers algorithms for fundamental geometric objects, such as points, lines, rays, segments, triangles, polygons, and planes. These algorithms determine the basic 2D and 3D properties, such as area, distance, inclusion, and intersections. There are also algorithms to compute bounding containers for these objects, including a fast bounding ball, various convex hull algorithms, as well as polygon extreme points and tangents. And there is a fast algorithm for polyline simplification using decimation that works in any dimension. These algorithms have been used in practice for several decades. They are robust, easy to understand, code, and maintain. And they execute very rapidly in practice, not just in theory. For example, the winding number point in polygon inclusion test, first developed by the author in 2000, is the fastest inclusion algorithm known, and works correctly even for non-simple polygons. Also, there is also a fast implementation of the Melkman algorithm for the convex hull of a simple polyline. And much more. If your programming involves geometry, this will be an invaluable reference.

Practical Geometry Algorithms

Practical Geometry Algorithms PDF Author: Daniel Sunday, PhD
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 194

Get Book Here

Book Description
This book presents practical geometry algorithms with computationally fast C++ code implementations. It covers algorithms for fundamental geometric objects, such as points, lines, rays, segments, triangles, polygons, and planes. These algorithms determine the basic 2D and 3D properties, such as area, distance, inclusion, and intersections. There are also algorithms to compute bounding containers for these objects, including a fast bounding ball, various convex hull algorithms, as well as polygon extreme points and tangents. And there is a fast algorithm for polyline simplification using decimation that works in any dimension. These algorithms have been used in practice for several decades. They are robust, easy to understand, code, and maintain. And they execute very rapidly in practice, not just in theory. For example, the winding number point in polygon inclusion test, first developed by the author in 2000, is the fastest inclusion algorithm known, and works correctly even for non-simple polygons. Also, there is also a fast implementation of the Melkman algorithm for the convex hull of a simple polyline. And much more. If your programming involves geometry, this will be an invaluable reference.

Practical Geometry Algorithms

Practical Geometry Algorithms PDF Author: Daniel Sunday
Publisher:
ISBN:
Category :
Languages : en
Pages : 193

Get Book Here

Book Description
This book presents practical geometry algorithms with computationally fast C++ code implementations. It covers algorithms for fundamental geometric objects, such as points, lines, rays, segments, triangles, polygons, and planes. These algorithms determine the basic 2D and 3D properties, such as area, distance, inclusion, and intersections. There are also algorithms to compute bounding containers for these objects, including a fast bounding ball, various convex hull algorithms, as well as polygon extreme points and tangents. And there is a fast algorithm for polyline simplification using decimation that works in any dimension. These algorithms have been used in practice for several decades. They are robust, easy to understand, code, and maintain. And they execute very rapidly in practice, not just in theory. For example, the winding number point in polygon inclusion test, first developed by the author in 2000, is the fastest inclusion algorithm known, and works correctly even for non-simple polygons. Also, there is a fast implementation of the Melkman algorithm for the convex hull of a simple polyline. And much more. If your programming involves geometry, this book will be an invaluable reference. Further, along with the book, there is a free download of all the C++ code from the book, plus some additional supporting code.

Computational Geometry

Computational Geometry PDF Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 3662042452
Category : Computers
Languages : en
Pages : 370

Get Book Here

Book Description
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.

Computational Geometry

Computational Geometry PDF Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Computational Geometry

Computational Geometry PDF Author: Ketan Mulmuley
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description
For beginning graduate-level courses in computational geometry. This up-to-date and concise introduction to computational geometry with emphasis on simple randomized methods is designed for quick, easy access to beginners.

Computational Geometry in C

Computational Geometry in C PDF Author: Joseph O'Rourke
Publisher: Cambridge University Press
ISBN: 110726863X
Category : Computers
Languages : en
Pages : 396

Get Book Here

Book Description
This is the revised and expanded 1998 edition of a popular introduction to the design and implementation of geometry algorithms arising in areas such as computer graphics, robotics, and engineering design. The basic techniques used in computational geometry are all covered: polygon triangulations, convex hulls, Voronoi diagrams, arrangements, geometric searching, and motion planning. The self-contained treatment presumes only an elementary knowledge of mathematics, but reaches topics on the frontier of current research, making it a useful reference for practitioners at all levels. The second edition contains material on several new topics, such as randomized algorithms for polygon triangulation, planar point location, 3D convex hull construction, intersection algorithms for ray-segment and ray-triangle, and point-in-polyhedron. The code in this edition is significantly improved from the first edition (more efficient and more robust), and four new routines are included. Java versions for this new edition are also available. All code is accessible from the book's Web site (http://cs.smith.edu/~orourke/) or by anonymous ftp.

Algorithmic Geometry

Algorithmic Geometry PDF Author: Jean-Daniel Boissonnat
Publisher: Cambridge University Press
ISBN: 9780521565295
Category : Computers
Languages : en
Pages : 548

Get Book Here

Book Description
The design and analysis of geometric algorithms have seen remarkable growth in recent years, due to their application in, for example, computer vision, graphics, medical imaging and CAD. The goals of this book are twofold: first to provide a coherent and systematic treatment of the foundations; secondly to present algorithmic solutions that are amenable to rigorous analysis and are efficient in practical situations. When possible, the algorithms are presented in their most general d-dimensional setting. Specific developments are given for the 2- or 3-dimensional cases when this results in significant improvements. The presentation is confined to Euclidean affine geometry, though the authors indicate whenever the treatment can be extended to curves and surfaces. The prerequisites for using the book are few, which will make it ideal for teaching advanced undergraduate or beginning graduate courses in computational geometry.

Guide to Computational Geometry Processing

Guide to Computational Geometry Processing PDF Author: J. Andreas Bærentzen
Publisher: Springer Science & Business Media
ISBN: 1447140753
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
This book reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. Features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional material at a supplementary website; includes self-study exercises throughout the text.

Computational Geometry and Computer Graphics in C++

Computational Geometry and Computer Graphics in C++ PDF Author: Michael Jay Laszlo
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
This book provides an accessible introduction to methods in computational geometry and computer graphics. It emphasizes the efficient object-oriented implemenation of geometric methods with useable C++ code for all methods discussed.

LEDA

LEDA PDF Author: Kurt Mehlhorn
Publisher: Cambridge University Press
ISBN: 9780521563291
Category : Computers
Languages : en
Pages : 1050

Get Book Here

Book Description
LEDA is a library of efficient data types and algorithms and a platform for combinatorial and geometric computing on which application programs can be built. In each of the core computer science areas of data structures, graph and network algorithms, and computational geometry, LEDA covers all (and more) that is found in the standard textbooks. LEDA is the first such library; it is written in C++ and is available on many types of machine. Whilst the software is freely available worldwide and is installed at hundreds of sites, this is the first book devoted to the library. Written by the main authors of LEDA, it is the definitive account, describing how the system is constructed and operates and how it can be used. The authors supply ample examples from a range of areas to show how the library can be used in practice, making the book essential for all workers in algorithms, data structures and computational geometry.