Potential Scattering in Atomic Physics

Potential Scattering in Atomic Physics PDF Author: P. G. Burke
Publisher: Springer Science & Business Media
ISBN: 1461341124
Category : Science
Languages : en
Pages : 137

Get Book Here

Book Description
This monograph was written while the author was a visitor at the Center for Theoretical Studies at the University of Miami, Coral Gables, Florida. The author wishes to thank Professor Behram Kursunoglu for the warm hospitality extended to him at the Center and to acknowledge the many interesting and fruitful discussions which he had with other visitors and with members of staff at the Center. Philip G. Burke v Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Scattering by a Short-Range Potential. . . . . . . . . . . . . . . 5 3. Scattering by a Coulomb Potential. . . . . . . . . . . . . . . . . . 11 4. Scattering by a Spin-Orbit Potential . . . . . . . . . . . . . . " 17 5. Scattering by One-Electron Atoms. . . . . . . . . . . . . . . . . . 23 6. Low-Energy Effective-Range Theory. . . . . . . . . . . . . . . . 39 7. Bound States and Resonances. . . . . . . . . . . . . . . . . . . . . . 55 8. Variational Methods and Bound Principles. . . . . . . . . . 75 9. Integral Equation Methods and the Born Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10. Semiclassical and Eikonal Methods . . . . . . . . . . . . . . . . . 117 Appendix. The Coupling of Angular Momenta . . . . . . . . . . . 127 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 vii 1 Introduction In this monograph we study the scattering of a particle by a potential field with particular reference to elastic electron scat tering by a neutral atom or by an ion. This subject is clearly of interest in its own right as a branch of quantum mechanical scattering theory. However, it also serves as an introduction to many of the basic theoretical concepts which are used in inelastic electron scattering and ionization. Consequently this mono graph can be viewed as an introduction to texts where these subjects are treated.

Potential Scattering in Atomic Physics

Potential Scattering in Atomic Physics PDF Author: P. G. Burke
Publisher: Springer Science & Business Media
ISBN: 1461341124
Category : Science
Languages : en
Pages : 137

Get Book Here

Book Description
This monograph was written while the author was a visitor at the Center for Theoretical Studies at the University of Miami, Coral Gables, Florida. The author wishes to thank Professor Behram Kursunoglu for the warm hospitality extended to him at the Center and to acknowledge the many interesting and fruitful discussions which he had with other visitors and with members of staff at the Center. Philip G. Burke v Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Scattering by a Short-Range Potential. . . . . . . . . . . . . . . 5 3. Scattering by a Coulomb Potential. . . . . . . . . . . . . . . . . . 11 4. Scattering by a Spin-Orbit Potential . . . . . . . . . . . . . . " 17 5. Scattering by One-Electron Atoms. . . . . . . . . . . . . . . . . . 23 6. Low-Energy Effective-Range Theory. . . . . . . . . . . . . . . . 39 7. Bound States and Resonances. . . . . . . . . . . . . . . . . . . . . . 55 8. Variational Methods and Bound Principles. . . . . . . . . . 75 9. Integral Equation Methods and the Born Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10. Semiclassical and Eikonal Methods . . . . . . . . . . . . . . . . . 117 Appendix. The Coupling of Angular Momenta . . . . . . . . . . . 127 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 vii 1 Introduction In this monograph we study the scattering of a particle by a potential field with particular reference to elastic electron scat tering by a neutral atom or by an ion. This subject is clearly of interest in its own right as a branch of quantum mechanical scattering theory. However, it also serves as an introduction to many of the basic theoretical concepts which are used in inelastic electron scattering and ionization. Consequently this mono graph can be viewed as an introduction to texts where these subjects are treated.

Scattering Theory of Molecules, Atoms and Nuclei

Scattering Theory of Molecules, Atoms and Nuclei PDF Author: Luiz Felipe Canto
Publisher: World Scientific
ISBN: 9814329843
Category : Science
Languages : en
Pages : 646

Get Book Here

Book Description
The aim of the book is to give a coherent and comprehensive account of quantum scattering theory with applications to atomic, molecular and nuclear systems. The motivation for this is to supply the necessary theoretical tools to calculate scattering observables of these many-body systems. Concepts which are seemingly different for atomic/molecular scattering from those of nuclear systems, are shown to be the same once physical units such as energy and length are diligently clarified. Many-body resonances excited in nuclear systems are the same as those in atomic systems and come under the name of Feshbach resonances. We also lean heavily on semi-classical methods to explain the physics of quantum scattering OCo especially the interference seen in the angle dependence of the cross section. Having in mind a wide readership, the book includes sections on scattering in two dimensions which is of use in surface physics. Several problems are also included at the end of each of the chapters.

Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions PDF Author: Philip G. Burke
Publisher: Springer Science & Business Media
ISBN: 1489915672
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.

Zero-Range Potentials and Their Applications in Atomic Physics

Zero-Range Potentials and Their Applications in Atomic Physics PDF Author: Yu.N. Demkov
Publisher: Springer Science & Business Media
ISBN: 146845451X
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description


Perfect/Complete Scattering Experiments

Perfect/Complete Scattering Experiments PDF Author: Hans Kleinpoppen
Publisher: Springer Science & Business Media
ISBN: 3642405142
Category : Science
Languages : en
Pages : 350

Get Book Here

Book Description
The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The `complete' experiment is, until today, hardly to perform. Therefore, much attention is paid to the results of state-of-the-art experiments providing detailed information on the process, and their comparison to the related theoretical approaches, just to mention relativistic multi-configurational Dirac-Fock, convergent close-coupling, Breit-Pauli R-matrix, or relativistic distorted wave approaches, as well as Green's operator methods. This book has been written in honor of Herbert Walther and his major contribution to the field but even to stimulate advanced Bachelor and Master students by demonstrating that obviously nowadays atomic and molecular scattering physics yields and gives a much exciting appreciation for further advancing the field.

Theoretical Atomic Physics

Theoretical Atomic Physics PDF Author: Harald Friedrich
Publisher: Springer
ISBN: 3319477692
Category : Science
Languages : en
Pages : 656

Get Book Here

Book Description
This expanded and updated well-established textbook contains an advanced presentationof quantum mechanics adapted to the requirements of modern atomic physics. Itincludes topics of current interest such as semiclassical theory, chaos, atom optics andBose-Einstein condensation in atomic gases. In order to facilitate the consolidationof the material covered, various problems are included, together with completesolutions. The emphasis on theory enables the reader to appreciate the fundamentalassumptions underlying standard theoretical constructs and to embark on independentresearch projects. The fourth edition of Theoretical Atomic Physics contains anupdated treatment of the sections involving scattering theory and near-thresholdphenomena manifest in the behaviour of cold atoms (and molecules). Special attentionis given to the quantization of weakly bound states just below the continuum thresholdand to low-energy scattering and quantum reflection just above. Particular emphasisis laid on the fundamental differences between long-ranged Coulombic potentialsand shorter-ranged potentials falling off faster than 1/r2 at large distances r. The newsections on tunable near-threshold Feshbach resonances and on scattering in two spatialdimensions also address problems relevant for current and future research in the fieldof cold (and ultra-cold) atoms. Graduate students and researchers will find this book avaluable resource and comprehensive reference alike.

Computational Atomic Physics

Computational Atomic Physics PDF Author: Klaus Bartschat
Publisher: Springer
ISBN: 3642610102
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
Computational Atomic Physics deals with computational methods for calculating electron (and positron) scattering from atoms and ions, including elastic scattering, excitation, and ionization processes. Each chapter is divided into abstract, theory, computer program with sample input and output, summary, suggested problems, and references. An MS-DOS diskette is included, which holds 11 programs covering the features of each chapter and therefore contributing to a deeper understanding of the field. Thus the book provides a unique practical application of advanced quantum mechanics.

Variational Methods in Electron-Atom Scattering Theory

Variational Methods in Electron-Atom Scattering Theory PDF Author: Robert K. Nesbet
Publisher: Springer Science & Business Media
ISBN: 1468484311
Category : Science
Languages : en
Pages : 234

Get Book Here

Book Description
The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Chapter 3. Practical details of the computational implementation of the variational theory are given in Chapter 4. Chapters 5 and 6 summarize recent appli cations of the variational theory to problems of experimental interest, with many examples of the successful interpretation of complex structural fea tures observed in scattering experiments, and of the quantitative prediction of details of electron-atom scattering phenomena.

Scattering Theory

Scattering Theory PDF Author: Harald Friedrich
Publisher: Springer
ISBN: 3662485265
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

Electron Scattering

Electron Scattering PDF Author: Colm T. Whelan
Publisher: Springer Science & Business Media
ISBN: 0387275673
Category : Science
Languages : en
Pages : 342

Get Book Here

Book Description
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.