Author: Antonio Daniel Silva
Publisher: Springer
ISBN: 3319293923
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
This work presents a new approach to portfolio composition in the stock market. It incorporates a fundamental approach using financial ratios and technical indicators with a Multi-Objective Evolutionary Algorithms to choose the portfolio composition with two objectives the return and the risk. Two different chromosomes are used for representing different investment models with real constraints equivalents to the ones faced by managers of mutual funds, hedge funds, and pension funds. To validate the present solution two case studies are presented for the SP&500 for the period June 2010 until end of 2012. The simulations demonstrates that stock selection based on financial ratios is a combination that can be used to choose the best companies in operational terms, obtaining returns above the market average with low variances in their returns. In this case the optimizer found stocks with high return on investment in a conjunction with high rate of growth of the net income and a high profit margin. To obtain stocks with high valuation potential it is necessary to choose companies with a lower or average market capitalization, low PER, high rates of revenue growth and high operating leverage
Portfolio Optimization Using Fundamental Indicators Based on Multi-Objective EA
Author: Antonio Daniel Silva
Publisher: Springer
ISBN: 3319293923
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
This work presents a new approach to portfolio composition in the stock market. It incorporates a fundamental approach using financial ratios and technical indicators with a Multi-Objective Evolutionary Algorithms to choose the portfolio composition with two objectives the return and the risk. Two different chromosomes are used for representing different investment models with real constraints equivalents to the ones faced by managers of mutual funds, hedge funds, and pension funds. To validate the present solution two case studies are presented for the SP&500 for the period June 2010 until end of 2012. The simulations demonstrates that stock selection based on financial ratios is a combination that can be used to choose the best companies in operational terms, obtaining returns above the market average with low variances in their returns. In this case the optimizer found stocks with high return on investment in a conjunction with high rate of growth of the net income and a high profit margin. To obtain stocks with high valuation potential it is necessary to choose companies with a lower or average market capitalization, low PER, high rates of revenue growth and high operating leverage
Publisher: Springer
ISBN: 3319293923
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
This work presents a new approach to portfolio composition in the stock market. It incorporates a fundamental approach using financial ratios and technical indicators with a Multi-Objective Evolutionary Algorithms to choose the portfolio composition with two objectives the return and the risk. Two different chromosomes are used for representing different investment models with real constraints equivalents to the ones faced by managers of mutual funds, hedge funds, and pension funds. To validate the present solution two case studies are presented for the SP&500 for the period June 2010 until end of 2012. The simulations demonstrates that stock selection based on financial ratios is a combination that can be used to choose the best companies in operational terms, obtaining returns above the market average with low variances in their returns. In this case the optimizer found stocks with high return on investment in a conjunction with high rate of growth of the net income and a high profit margin. To obtain stocks with high valuation potential it is necessary to choose companies with a lower or average market capitalization, low PER, high rates of revenue growth and high operating leverage
Portfolio Selection Using Multi-Objective Optimisation
Author: Saurabh Agarwal
Publisher: Springer
ISBN: 3319544160
Category : Business & Economics
Languages : en
Pages : 240
Book Description
This book explores the risk-return paradox in portfolio selection by incorporating multi-objective criteria. Empirical research is presented on the development of alternate portfolio models and their relative performance in the risk/return framework to provide solutions to multi-objective optimization. Next to outlining techniques for undertaking individual investor’s profiling and portfolio programming, it also offers a new and practical approach for multi-objective portfolio optimization. This book will be of interest to Foreign Institutional Investors (FIIs), Mutual Funds, investors, and researchers and students in the field.
Publisher: Springer
ISBN: 3319544160
Category : Business & Economics
Languages : en
Pages : 240
Book Description
This book explores the risk-return paradox in portfolio selection by incorporating multi-objective criteria. Empirical research is presented on the development of alternate portfolio models and their relative performance in the risk/return framework to provide solutions to multi-objective optimization. Next to outlining techniques for undertaking individual investor’s profiling and portfolio programming, it also offers a new and practical approach for multi-objective portfolio optimization. This book will be of interest to Foreign Institutional Investors (FIIs), Mutual Funds, investors, and researchers and students in the field.
Applying Particle Swarm Optimization
Author: Burcu Adıgüzel Mercangöz
Publisher: Springer Nature
ISBN: 3030702812
Category : Business & Economics
Languages : en
Pages : 355
Book Description
This book explains the theoretical structure of particle swarm optimization (PSO) and focuses on the application of PSO to portfolio optimization problems. The general goal of portfolio optimization is to find a solution that provides the highest expected return at each level of portfolio risk. According to H. Markowitz’s portfolio selection theory, as new assets are added to an investment portfolio, the total risk of the portfolio’s decreases depending on the correlations of asset returns, while the expected return on the portfolio represents the weighted average of the expected returns for each asset. The book explains PSO in detail and demonstrates how to implement Markowitz’s portfolio optimization approach using PSO. In addition, it expands on the Markowitz model and seeks to improve the solution-finding process with the aid of various algorithms. In short, the book provides researchers, teachers, engineers, managers and practitioners with many tools they need to apply the PSO technique to portfolio optimization.
Publisher: Springer Nature
ISBN: 3030702812
Category : Business & Economics
Languages : en
Pages : 355
Book Description
This book explains the theoretical structure of particle swarm optimization (PSO) and focuses on the application of PSO to portfolio optimization problems. The general goal of portfolio optimization is to find a solution that provides the highest expected return at each level of portfolio risk. According to H. Markowitz’s portfolio selection theory, as new assets are added to an investment portfolio, the total risk of the portfolio’s decreases depending on the correlations of asset returns, while the expected return on the portfolio represents the weighted average of the expected returns for each asset. The book explains PSO in detail and demonstrates how to implement Markowitz’s portfolio optimization approach using PSO. In addition, it expands on the Markowitz model and seeks to improve the solution-finding process with the aid of various algorithms. In short, the book provides researchers, teachers, engineers, managers and practitioners with many tools they need to apply the PSO technique to portfolio optimization.
Applications of Multi-objective Evolutionary Algorithms
Author: Carlos A. Coello Coello
Publisher: World Scientific
ISBN: 9812561064
Category : Computers
Languages : en
Pages : 792
Book Description
- Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains
Publisher: World Scientific
ISBN: 9812561064
Category : Computers
Languages : en
Pages : 792
Book Description
- Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains
Multi-Objective Optimization using Artificial Intelligence Techniques
Author: Seyedali Mirjalili
Publisher: Springer
ISBN: 3030248356
Category : Technology & Engineering
Languages : en
Pages : 66
Book Description
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
Publisher: Springer
ISBN: 3030248356
Category : Technology & Engineering
Languages : en
Pages : 66
Book Description
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
Multi-Objective Optimization
Author: Jyotsna K. Mandal
Publisher: Springer
ISBN: 9811314713
Category : Computers
Languages : en
Pages : 326
Book Description
This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.
Publisher: Springer
ISBN: 9811314713
Category : Computers
Languages : en
Pages : 326
Book Description
This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.
Non-Convex Multi-Objective Optimization
Author: Panos M. Pardalos
Publisher: Springer
ISBN: 3319610074
Category : Mathematics
Languages : en
Pages : 196
Book Description
Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.
Publisher: Springer
ISBN: 3319610074
Category : Mathematics
Languages : en
Pages : 196
Book Description
Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.
Portfolio Decision Analysis
Author: Ahti Salo
Publisher: Springer Science & Business Media
ISBN: 1441999434
Category : Business & Economics
Languages : en
Pages : 410
Book Description
Portfolio Decision Analysis: Improved Methods for Resource Allocation provides an extensive, up-to-date coverage of decision analytic methods which help firms and public organizations allocate resources to 'lumpy' investment opportunities while explicitly recognizing relevant financial and non-financial evaluation criteria and the presence of alternative investment opportunities. In particular, it discusses the evolution of these methods, presents new methodological advances and illustrates their use across several application domains. The book offers a many-faceted treatment of portfolio decision analysis (PDA). Among other things, it (i) synthesizes the state-of-play in PDA, (ii) describes novel methodologies, (iii) fosters the deployment of these methodologies, and (iv) contributes to the strengthening of research on PDA. Portfolio problems are widely regarded as the single most important application context of decision analysis, and, with its extensive and unique coverage of these problems, this book is a much-needed addition to the literature. The book also presents innovative treatments of new methodological approaches and their uses in applications. The intended audience consists of practitioners and researchers who wish to gain a good understanding of portfolio decision analysis and insights into how PDA methods can be leveraged in different application contexts. The book can also be employed in courses at the post-graduate level.
Publisher: Springer Science & Business Media
ISBN: 1441999434
Category : Business & Economics
Languages : en
Pages : 410
Book Description
Portfolio Decision Analysis: Improved Methods for Resource Allocation provides an extensive, up-to-date coverage of decision analytic methods which help firms and public organizations allocate resources to 'lumpy' investment opportunities while explicitly recognizing relevant financial and non-financial evaluation criteria and the presence of alternative investment opportunities. In particular, it discusses the evolution of these methods, presents new methodological advances and illustrates their use across several application domains. The book offers a many-faceted treatment of portfolio decision analysis (PDA). Among other things, it (i) synthesizes the state-of-play in PDA, (ii) describes novel methodologies, (iii) fosters the deployment of these methodologies, and (iv) contributes to the strengthening of research on PDA. Portfolio problems are widely regarded as the single most important application context of decision analysis, and, with its extensive and unique coverage of these problems, this book is a much-needed addition to the literature. The book also presents innovative treatments of new methodological approaches and their uses in applications. The intended audience consists of practitioners and researchers who wish to gain a good understanding of portfolio decision analysis and insights into how PDA methods can be leveraged in different application contexts. The book can also be employed in courses at the post-graduate level.
Multi-Objective Optimization using Evolutionary Algorithms
Author: Kalyanmoy Deb
Publisher: John Wiley & Sons
ISBN: 9780471873396
Category : Mathematics
Languages : en
Pages : 540
Book Description
Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
Publisher: John Wiley & Sons
ISBN: 9780471873396
Category : Mathematics
Languages : en
Pages : 540
Book Description
Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
Variable Neighborhood Search
Author: Rachid Benmansour
Publisher: Springer Nature
ISBN: 3030449327
Category : Computers
Languages : en
Pages : 205
Book Description
This volume constitutes the post- conference proceedings of the 7th International Conference on Variable Neighborhood Search, ICVNS 2019, held in Rabat, Morocco, in October 2019. The 13 full papers presented in this volume were carefully reviewed and selected from 46 submissions. The papers describe recent advances in methods and applications of variable neighborhood search.
Publisher: Springer Nature
ISBN: 3030449327
Category : Computers
Languages : en
Pages : 205
Book Description
This volume constitutes the post- conference proceedings of the 7th International Conference on Variable Neighborhood Search, ICVNS 2019, held in Rabat, Morocco, in October 2019. The 13 full papers presented in this volume were carefully reviewed and selected from 46 submissions. The papers describe recent advances in methods and applications of variable neighborhood search.