Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives

Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives PDF Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 113950245X
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.

Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives

Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives PDF Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 113950245X
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility, the authors study the pricing and hedging of financial derivatives under stochastic volatility in equity, interest-rate, and credit markets. They present and analyze multiscale stochastic volatility models and asymptotic approximations. These can be used in equity markets, for instance, to link the prices of path-dependent exotic instruments to market implied volatilities. The methods are also used for interest rate and credit derivatives. Other applications considered include variance-reduction techniques, portfolio optimization, forward-looking estimation of CAPM 'beta', and the Heston model and generalizations of it. 'Off-the-shelf' formulas and calibration tools are provided to ease the transition for practitioners who adopt this new method. The attention to detail and explicit presentation make this also an excellent text for a graduate course in financial and applied mathematics.

Financial Signal Processing and Machine Learning

Financial Signal Processing and Machine Learning PDF Author: Ali N. Akansu
Publisher: John Wiley & Sons
ISBN: 1118745671
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.

Derivatives in Financial Markets with Stochastic Volatility

Derivatives in Financial Markets with Stochastic Volatility PDF Author: Jean-Pierre Fouque
Publisher: Cambridge University Press
ISBN: 9780521791632
Category : Business & Economics
Languages : en
Pages : 222

Get Book Here

Book Description
This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.

Risk Measures with Applications in Finance and Economics

Risk Measures with Applications in Finance and Economics PDF Author: Michael McAleer
Publisher: MDPI
ISBN: 3038974439
Category : Business & Economics
Languages : en
Pages : 536

Get Book Here

Book Description
Risk measures play a vital role in many subfields of economics and finance. It has been proposed that risk measures could be analysed in relation to the performance of variables extracted from empirical real-world data. For example, risk measures may help inform effective monetary and fiscal policies and, therefore, the further development of pricing models for financial assets such as equities, bonds, currencies, and derivative securities.A Special Issue of “Risk Measures with Applications in Finance and Economics” will be devoted to advancements in the mathematical and statistical development of risk measures with applications in finance and economics. This Special Issue will bring together the theory, practice and real-world applications of risk measures. This book is a collection of papers published in the Special Issue of “Risk Measures with Applications in Finance and Economics” for Sustainability in 2018.

The Princeton Companion to Applied Mathematics

The Princeton Companion to Applied Mathematics PDF Author: Nicholas J. Higham
Publisher: Princeton University Press
ISBN: 1400874475
Category : Mathematics
Languages : en
Pages : 1031

Get Book Here

Book Description
The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index

Multi-Period Trading Via Convex Optimization

Multi-Period Trading Via Convex Optimization PDF Author: Stephen Boyd
Publisher:
ISBN: 9781680833287
Category : Mathematics
Languages : en
Pages : 92

Get Book Here

Book Description
This monograph collects in one place the basic definitions, a careful description of the model, and discussion of how convex optimization can be used in multi-period trading, all in a common notation and framework.

Stochastic Analysis and Applications 2014

Stochastic Analysis and Applications 2014 PDF Author: Dan Crisan
Publisher: Springer
ISBN: 3319112929
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
Articles from many of the main contributors to recent progress in stochastic analysis are included in this volume, which provides a snapshot of the current state of the area and its ongoing developments. It constitutes the proceedings of the conference on "Stochastic Analysis and Applications" held at the University of Oxford and the Oxford-Man Institute during 23-27 September, 2013. The conference honored the 60th birthday of Professor Terry Lyons FLSW FRSE FRS, Wallis Professor of Mathematics, University of Oxford. Terry Lyons is one of the leaders in the field of stochastic analysis. His introduction of the notion of rough paths has revolutionized the field, both in theory and in practice. Stochastic Analysis is the branch of mathematics that deals with the analysis of dynamical systems affected by noise. It emerged as a core area of mathematics in the late 20th century and has subsequently developed into an important theory with a wide range of powerful and novel tools, and with impressive applications within and beyond mathematics. Many systems are profoundly affected by stochastic fluctuations and it is not surprising that the array of applications of Stochastic Analysis is vast and touches on many aspects of life. The present volume is intended for researchers and Ph.D. students in stochastic analysis and its applications, stochastic optimization and financial mathematics, as well as financial engineers and quantitative analysts.

Optimal Mean Reversion Trading

Optimal Mean Reversion Trading PDF Author: Tim Leung (Professor of industrial engineering)
Publisher: World Scientific
ISBN: 9814725927
Category : Business & Economics
Languages : en
Pages : 221

Get Book Here

Book Description
"Optimal Mean Reversion Trading: Mathematical Analysis and Practical Applications provides a systematic study to the practical problem of optimal trading in the presence of mean-reverting price dynamics. It is self-contained and organized in its presentation, and provides rigorous mathematical analysis as well as computational methods for trading ETFs, options, futures on commodities or volatility indices, and credit risk derivatives. This book offers a unique financial engineering approach that combines novel analytical methodologies and applications to a wide array of real-world examples. It extracts the mathematical problems from various trading approaches and scenarios, but also addresses the practical aspects of trading problems, such as model estimation, risk premium, risk constraints, and transaction costs. The explanations in the book are detailed enough to capture the interest of the curious student or researcher, and complete enough to give the necessary background material for further exploration into the subject and related literature. This book will be a useful tool for anyone interested in financial engineering, particularly algorithmic trading and commodity trading, and would like to understand the mathematically optimal strategies in different market environments."--

Handbook of Volatility Models and Their Applications

Handbook of Volatility Models and Their Applications PDF Author: Luc Bauwens
Publisher: John Wiley & Sons
ISBN: 1118272056
Category : Business & Economics
Languages : en
Pages : 566

Get Book Here

Book Description
A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.

Modeling, Stochastic Control, Optimization, and Applications

Modeling, Stochastic Control, Optimization, and Applications PDF Author: George Yin
Publisher: Springer
ISBN: 3030254984
Category : Mathematics
Languages : en
Pages : 593

Get Book Here

Book Description
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.