Author: Motoo Kimura
Publisher: University of Chicago Press
ISBN: 9780226435633
Category : Science
Languages : en
Pages : 736
Book Description
One of this century's leading evolutionary biologists, Motoo Kimura revolutionized the field with his random drift theory of molecular evolution—the neutral theory—and his groundbreaking theoretical work in population genetics. This volume collects 57 of Kimura's most important papers and covers forty years of his diverse and original contributions to our understanding of how genetic variation affects evolutionary change. Kimura's neutral theory, first presented in 1968, challenged the notion that natural selection was the sole directive force in evolution. Arguing that mutations and random drift account for variations at the level of DNA and amino acids, Kimura advanced a theory of evolutionary change that was strongly challenged at first and that eventually earned the respect and interest of evolutionary biologists throughout the world. This volume includes the seminal papers on the neutral theory, as well as many others that cover such topics as population structure, variable selection intensity, the genetics of quantitative characters, inbreeding systems, and reversibility of changes by random drift. Background essays by Naoyuki Takahata examine Kimura's work in relation to its effects and recent developments in each area.
Population Genetics, Molecular Evolution, and the Neutral Theory
Author: Motoo Kimura
Publisher: University of Chicago Press
ISBN: 9780226435633
Category : Science
Languages : en
Pages : 736
Book Description
One of this century's leading evolutionary biologists, Motoo Kimura revolutionized the field with his random drift theory of molecular evolution—the neutral theory—and his groundbreaking theoretical work in population genetics. This volume collects 57 of Kimura's most important papers and covers forty years of his diverse and original contributions to our understanding of how genetic variation affects evolutionary change. Kimura's neutral theory, first presented in 1968, challenged the notion that natural selection was the sole directive force in evolution. Arguing that mutations and random drift account for variations at the level of DNA and amino acids, Kimura advanced a theory of evolutionary change that was strongly challenged at first and that eventually earned the respect and interest of evolutionary biologists throughout the world. This volume includes the seminal papers on the neutral theory, as well as many others that cover such topics as population structure, variable selection intensity, the genetics of quantitative characters, inbreeding systems, and reversibility of changes by random drift. Background essays by Naoyuki Takahata examine Kimura's work in relation to its effects and recent developments in each area.
Publisher: University of Chicago Press
ISBN: 9780226435633
Category : Science
Languages : en
Pages : 736
Book Description
One of this century's leading evolutionary biologists, Motoo Kimura revolutionized the field with his random drift theory of molecular evolution—the neutral theory—and his groundbreaking theoretical work in population genetics. This volume collects 57 of Kimura's most important papers and covers forty years of his diverse and original contributions to our understanding of how genetic variation affects evolutionary change. Kimura's neutral theory, first presented in 1968, challenged the notion that natural selection was the sole directive force in evolution. Arguing that mutations and random drift account for variations at the level of DNA and amino acids, Kimura advanced a theory of evolutionary change that was strongly challenged at first and that eventually earned the respect and interest of evolutionary biologists throughout the world. This volume includes the seminal papers on the neutral theory, as well as many others that cover such topics as population structure, variable selection intensity, the genetics of quantitative characters, inbreeding systems, and reversibility of changes by random drift. Background essays by Naoyuki Takahata examine Kimura's work in relation to its effects and recent developments in each area.
The Causes of Molecular Evolution
Author: John H. Gillespie
Publisher: Oxford University Press
ISBN: 0195357744
Category : Science
Languages : en
Pages : 351
Book Description
This work provides a unified theory that addresses the important problem of the origin and maintenance of genetic variation in natural populations. With modern molecular techniques, variation is found in all species, sometimes at astonishingly high levels. Yet, despite these observations, the forces that maintain variation within and between species have been difficult subjects of study. Because they act very weakly and operate over vast time scales, scientists must rely on indirect inferences and speculative mathematical models. However, despite these obstacles, many advances have been made. The author's research in molecular genetics, evolution, and bio-mathematics has enabled him to draw on this work, and present a coherent and valuable view of the field. The book is divided into three parts. The first consists of three chapters on protein evolution, DNA evolution, and molecular mechanisms. This section reviews the experimental observations on genetic variation. The second part gives a unified treatment of the mathematical theory of selection in a fluctuating environment. The final two chapters combine the earlier assessments in a treatment of the scientific status of two competing theories for the maintenance of genetic variation. Steeped in the enormous advances population genetics has made over the past 25 years, this book has proven highly popular among human geneticists, biologists, evolutionary theorists, and bio-mathematicians.
Publisher: Oxford University Press
ISBN: 0195357744
Category : Science
Languages : en
Pages : 351
Book Description
This work provides a unified theory that addresses the important problem of the origin and maintenance of genetic variation in natural populations. With modern molecular techniques, variation is found in all species, sometimes at astonishingly high levels. Yet, despite these observations, the forces that maintain variation within and between species have been difficult subjects of study. Because they act very weakly and operate over vast time scales, scientists must rely on indirect inferences and speculative mathematical models. However, despite these obstacles, many advances have been made. The author's research in molecular genetics, evolution, and bio-mathematics has enabled him to draw on this work, and present a coherent and valuable view of the field. The book is divided into three parts. The first consists of three chapters on protein evolution, DNA evolution, and molecular mechanisms. This section reviews the experimental observations on genetic variation. The second part gives a unified treatment of the mathematical theory of selection in a fluctuating environment. The final two chapters combine the earlier assessments in a treatment of the scientific status of two competing theories for the maintenance of genetic variation. Steeped in the enormous advances population genetics has made over the past 25 years, this book has proven highly popular among human geneticists, biologists, evolutionary theorists, and bio-mathematicians.
Molecular Evolutionary Genetics
Author: Masatoshi Nei
Publisher: Columbia University Press
ISBN: 9780231063210
Category : Computers
Languages : en
Pages : 526
Book Description
-- "The Scientist"
Publisher: Columbia University Press
ISBN: 9780231063210
Category : Computers
Languages : en
Pages : 526
Book Description
-- "The Scientist"
A Primer of Molecular Population Genetics
Author: Asher D. Cutter
Publisher:
ISBN: 0198838948
Category : Science
Languages : en
Pages : 266
Book Description
What are the genomic signatures of adaptations in DNA? How often does natural selection dictate changes to DNA? How does the ebb and flow in the abundance of individuals over time get marked onto chromosomes to record genetic history? Molecular population genetics seeks to answer such questions by explaining genetic variation and molecular evolution from micro-evolutionary principles. It provides a way to learn about how evolution works and how it shapes species by incorporating molecular details of DNA as the heritable material. It enables us to understand the logic of how mutations originate, change in abundance in populations, and become fixed as DNA sequence divergence between species. With the revolutionary advances in genomic data acquisition, understanding molecular population genetics is now a fundamental requirement for today's life scientists. These concepts apply in analysis of personal genomics, genome-wide association studies, landscape and conservation genetics, forensics, molecular anthropology, and selection scans. This book introduces, in an accessible way, the bare essentials of the theory and practice of molecular population genetics.
Publisher:
ISBN: 0198838948
Category : Science
Languages : en
Pages : 266
Book Description
What are the genomic signatures of adaptations in DNA? How often does natural selection dictate changes to DNA? How does the ebb and flow in the abundance of individuals over time get marked onto chromosomes to record genetic history? Molecular population genetics seeks to answer such questions by explaining genetic variation and molecular evolution from micro-evolutionary principles. It provides a way to learn about how evolution works and how it shapes species by incorporating molecular details of DNA as the heritable material. It enables us to understand the logic of how mutations originate, change in abundance in populations, and become fixed as DNA sequence divergence between species. With the revolutionary advances in genomic data acquisition, understanding molecular population genetics is now a fundamental requirement for today's life scientists. These concepts apply in analysis of personal genomics, genome-wide association studies, landscape and conservation genetics, forensics, molecular anthropology, and selection scans. This book introduces, in an accessible way, the bare essentials of the theory and practice of molecular population genetics.
Molecular Population Genetics
Author: Matthew William Hahn
Publisher: Sinauer Associates, Incorporated
ISBN: 9780878939657
Category : Molecular genetics
Languages : en
Pages : 334
Book Description
Published by Sinauer Associates, an imprint of Oxford University Press. Provides descriptions of the methods and tools used in molecular population genetics, which has combined advances in molecular biology and genomics with mathematical and empirical findings to uncover the history of natural selection and demographic shifts in many organisms.
Publisher: Sinauer Associates, Incorporated
ISBN: 9780878939657
Category : Molecular genetics
Languages : en
Pages : 334
Book Description
Published by Sinauer Associates, an imprint of Oxford University Press. Provides descriptions of the methods and tools used in molecular population genetics, which has combined advances in molecular biology and genomics with mathematical and empirical findings to uncover the history of natural selection and demographic shifts in many organisms.
Population genetics and molecular evolution
Author: Tomoko Ohta
Publisher:
ISBN: 9780387155845
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780387155845
Category :
Languages : en
Pages : 0
Book Description
Molecular Evolution and Population Genetics for Marine Biologists
Author: Yuri Kartavtsev
Publisher: CRC Press
ISBN: 9781498701600
Category : Science
Languages : en
Pages : 0
Book Description
Research in modern experimental and theoretical population genetics has been strengthened by advances in molecular techniques for the analysis of genetic variability. The evolutionary relationships of organisms may be investigated by comparing DNA sequences. This book covers chapters on population genetics, DNA polymorphism, genetic homeostasis, and biochemical genetics, plus a chapter on phylogenetic tree construction. In addition, each chapter contains training materials with numerical examples.
Publisher: CRC Press
ISBN: 9781498701600
Category : Science
Languages : en
Pages : 0
Book Description
Research in modern experimental and theoretical population genetics has been strengthened by advances in molecular techniques for the analysis of genetic variability. The evolutionary relationships of organisms may be investigated by comparing DNA sequences. This book covers chapters on population genetics, DNA polymorphism, genetic homeostasis, and biochemical genetics, plus a chapter on phylogenetic tree construction. In addition, each chapter contains training materials with numerical examples.
The Neutral Theory of Molecular Evolution
Author: Motoo Kimura
Publisher: Cambridge University Press
ISBN: 1139935674
Category : Science
Languages : en
Pages : 388
Book Description
Motoo Kimura, as founder of the neutral theory, is uniquely placed to write this book. He first proposed the theory in 1968 to explain the unexpectedly high rate of evolutionary change and very large amount of intraspecific variability at the molecular level that had been uncovered by new techniques in molecular biology. The theory - which asserts that the great majority of evolutionary changes at the molecular level are caused not by Darwinian selection but by random drift of selectively neutral mutants - has caused controversy ever since. This book is the first comprehensive treatment of this subject and the author synthesises a wealth of material - ranging from a historical perspective, through recent molecular discoveries, to sophisticated mathematical arguments - all presented in a most lucid manner.
Publisher: Cambridge University Press
ISBN: 1139935674
Category : Science
Languages : en
Pages : 388
Book Description
Motoo Kimura, as founder of the neutral theory, is uniquely placed to write this book. He first proposed the theory in 1968 to explain the unexpectedly high rate of evolutionary change and very large amount of intraspecific variability at the molecular level that had been uncovered by new techniques in molecular biology. The theory - which asserts that the great majority of evolutionary changes at the molecular level are caused not by Darwinian selection but by random drift of selectively neutral mutants - has caused controversy ever since. This book is the first comprehensive treatment of this subject and the author synthesises a wealth of material - ranging from a historical perspective, through recent molecular discoveries, to sophisticated mathematical arguments - all presented in a most lucid manner.
Computational Molecular Evolution
Author: Ziheng Yang
Publisher: Oxford University Press, USA
ISBN: 0198566999
Category : Medical
Languages : en
Pages : 374
Book Description
This book describes the models, methods and algorithms that are most useful for analysing the ever-increasing supply of molecular sequence data, with a view to furthering our understanding of the evolution of genes and genomes.
Publisher: Oxford University Press, USA
ISBN: 0198566999
Category : Medical
Languages : en
Pages : 374
Book Description
This book describes the models, methods and algorithms that are most useful for analysing the ever-increasing supply of molecular sequence data, with a view to furthering our understanding of the evolution of genes and genomes.
Statistical Methods in Molecular Evolution
Author: Rasmus Nielsen
Publisher: Springer Science & Business Media
ISBN: 0387277331
Category : Science
Languages : en
Pages : 503
Book Description
In the field of molecular evolution, inferences about past evolutionary events are made using molecular data from currently living species. With the availability of genomic data from multiple related species, molecular evolution has become one of the most active and fastest growing fields of study in genomics and bioinformatics. Most studies in molecular evolution rely heavily on statistical procedures based on stochastic process modelling and advanced computational methods including high-dimensional numerical optimization and Markov Chain Monte Carlo. This book provides an overview of the statistical theory and methods used in studies of molecular evolution. It includes an introductory section suitable for readers that are new to the field, a section discussing practical methods for data analysis, and more specialized sections discussing specific models and addressing statistical issues relating to estimation and model choice. The chapters are written by the leaders of field and they will take the reader from basic introductory material to the state-of-the-art statistical methods. This book is suitable for statisticians seeking to learn more about applications in molecular evolution and molecular evolutionary biologists with an interest in learning more about the theory behind the statistical methods applied in the field. The chapters of the book assume no advanced mathematical skills beyond basic calculus, although familiarity with basic probability theory will help the reader. Most relevant statistical concepts are introduced in the book in the context of their application in molecular evolution, and the book should be accessible for most biology graduate students with an interest in quantitative methods and theory. Rasmus Nielsen received his Ph.D. form the University of California at Berkeley in 1998 and after a postdoc at Harvard University, he assumed a faculty position in Statistical Genomics at Cornell University. He is currently an Ole Rømer Fellow at the University of Copenhagen and holds a Sloan Research Fellowship. His is an associate editor of the Journal of Molecular Evolution and has published more than fifty original papers in peer-reviewed journals on the topic of this book. From the reviews: "...Overall this is a very useful book in an area of increasing importance." Journal of the Royal Statistical Society "I find Statistical Methods in Molecular Evolution very interesting and useful. It delves into problems that were considered very difficult just several years ago...the book is likely to stimulate the interest of statisticians that are unaware of this exciting field of applications. It is my hope that it will also help the 'wet lab' molecular evolutionist to better understand mathematical and statistical methods." Marek Kimmel for the Journal of the American Statistical Association, September 2006 "Who should read this book? We suggest that anyone who deals with molecular data (who does not?) and anyone who asks evolutionary questions (who should not?) ought to consult the relevant chapters in this book." Dan Graur and Dror Berel for Biometrics, September 2006 "Coalescence theory facilitates the merger of population genetics theory with phylogenetic approaches, but still, there are mostly two camps: phylogeneticists and population geneticists. Only a few people are moving freely between them. Rasmus Nielsen is certainly one of these researchers, and his work so far has merged many population genetic and phylogenetic aspects of biological research under the umbrella of molecular evolution. Although Nielsen did not contribute a chapter to his book, his work permeates all its chapters. This book gives an overview of his interests and current achievements in molecular evolution. In short, this book should be on your bookshelf." Peter Beerli for Evolution, 60(2), 2006
Publisher: Springer Science & Business Media
ISBN: 0387277331
Category : Science
Languages : en
Pages : 503
Book Description
In the field of molecular evolution, inferences about past evolutionary events are made using molecular data from currently living species. With the availability of genomic data from multiple related species, molecular evolution has become one of the most active and fastest growing fields of study in genomics and bioinformatics. Most studies in molecular evolution rely heavily on statistical procedures based on stochastic process modelling and advanced computational methods including high-dimensional numerical optimization and Markov Chain Monte Carlo. This book provides an overview of the statistical theory and methods used in studies of molecular evolution. It includes an introductory section suitable for readers that are new to the field, a section discussing practical methods for data analysis, and more specialized sections discussing specific models and addressing statistical issues relating to estimation and model choice. The chapters are written by the leaders of field and they will take the reader from basic introductory material to the state-of-the-art statistical methods. This book is suitable for statisticians seeking to learn more about applications in molecular evolution and molecular evolutionary biologists with an interest in learning more about the theory behind the statistical methods applied in the field. The chapters of the book assume no advanced mathematical skills beyond basic calculus, although familiarity with basic probability theory will help the reader. Most relevant statistical concepts are introduced in the book in the context of their application in molecular evolution, and the book should be accessible for most biology graduate students with an interest in quantitative methods and theory. Rasmus Nielsen received his Ph.D. form the University of California at Berkeley in 1998 and after a postdoc at Harvard University, he assumed a faculty position in Statistical Genomics at Cornell University. He is currently an Ole Rømer Fellow at the University of Copenhagen and holds a Sloan Research Fellowship. His is an associate editor of the Journal of Molecular Evolution and has published more than fifty original papers in peer-reviewed journals on the topic of this book. From the reviews: "...Overall this is a very useful book in an area of increasing importance." Journal of the Royal Statistical Society "I find Statistical Methods in Molecular Evolution very interesting and useful. It delves into problems that were considered very difficult just several years ago...the book is likely to stimulate the interest of statisticians that are unaware of this exciting field of applications. It is my hope that it will also help the 'wet lab' molecular evolutionist to better understand mathematical and statistical methods." Marek Kimmel for the Journal of the American Statistical Association, September 2006 "Who should read this book? We suggest that anyone who deals with molecular data (who does not?) and anyone who asks evolutionary questions (who should not?) ought to consult the relevant chapters in this book." Dan Graur and Dror Berel for Biometrics, September 2006 "Coalescence theory facilitates the merger of population genetics theory with phylogenetic approaches, but still, there are mostly two camps: phylogeneticists and population geneticists. Only a few people are moving freely between them. Rasmus Nielsen is certainly one of these researchers, and his work so far has merged many population genetic and phylogenetic aspects of biological research under the umbrella of molecular evolution. Although Nielsen did not contribute a chapter to his book, his work permeates all its chapters. This book gives an overview of his interests and current achievements in molecular evolution. In short, this book should be on your bookshelf." Peter Beerli for Evolution, 60(2), 2006