Author: Pamela Soltis
Publisher: Springer Science & Business Media
ISBN: 3642314414
Category : Science
Languages : en
Pages : 416
Book Description
Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.
Polyploidy and Genome Evolution
Author: Pamela Soltis
Publisher: Springer Science & Business Media
ISBN: 3642314414
Category : Science
Languages : en
Pages : 416
Book Description
Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.
Publisher: Springer Science & Business Media
ISBN: 3642314414
Category : Science
Languages : en
Pages : 416
Book Description
Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.
Polyploidy and Genome Evolution
Author: Pamela Soltis
Publisher: Springer
ISBN: 9783642432811
Category : Science
Languages : en
Pages : 0
Book Description
Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.
Publisher: Springer
ISBN: 9783642432811
Category : Science
Languages : en
Pages : 0
Book Description
Polyploidy – whole-genome duplication (WGD) – is a fundamental driver of biodiversity with significant consequences for genome structure, organization, and evolution. Once considered a speciation process common only in plants, polyploidy is now recognized to have played a major role in the structure, gene content, and evolution of most eukaryotic genomes. In fact, the diversity of eukaryotes seems closely tied to multiple WGDs. Polyploidy generates new genomic interactions – initially resulting in “genomic and transcriptomic shock” – that must be resolved in a new polyploid lineage. This process essentially acts as a “reset” button, resulting in genomic changes that may ultimately promote adaptive speciation. This book brings together for the first time the conceptual and theoretical underpinnings of polyploid genome evolution with syntheses of the patterns and processes of genome evolution in diverse polyploid groups. Because polyploidy is most common and best studied in plants, the book emphasizes plant models, but recent studies of vertebrates and fungi are providing fresh perspectives on factors that allow polyploid speciation and shape polyploid genomes. The emerging paradigm is that polyploidy – through alterations in genome structure and gene regulation – generates genetic and phenotypic novelty that manifests itself at the chromosomal, physiological, and organismal levels, with long-term ecological and evolutionary consequences.
Plant Molecular Evolution
Author: J.J. Doyle
Publisher: Springer Science & Business Media
ISBN: 9780792360964
Category : Medical
Languages : en
Pages : 294
Book Description
Plant molecular biology has produced an ever-increasing flood of data about genes and genomes. Evolutionary biology and systematics provides the context for synthesizing this information. This book brings together contributions from evolutionary biologists, systematists, developmental geneticists, biochemists, and others working on diverse aspects of plant biology whose work touches to varying degrees on plant molecular evolution. The book is organized in three parts, the first of which introduces broad topics in evolutionary biology and summarizes advances in plant molecular phylogenetics, with emphasis on model plant systems. The second segment presents a series of case studies of gene family evolution, while the third gives overviews of the evolution of important plant processes such as disease resistance, nodulation, hybridization, transposable elements and genome evolution, and polyploidy.
Publisher: Springer Science & Business Media
ISBN: 9780792360964
Category : Medical
Languages : en
Pages : 294
Book Description
Plant molecular biology has produced an ever-increasing flood of data about genes and genomes. Evolutionary biology and systematics provides the context for synthesizing this information. This book brings together contributions from evolutionary biologists, systematists, developmental geneticists, biochemists, and others working on diverse aspects of plant biology whose work touches to varying degrees on plant molecular evolution. The book is organized in three parts, the first of which introduces broad topics in evolutionary biology and summarizes advances in plant molecular phylogenetics, with emphasis on model plant systems. The second segment presents a series of case studies of gene family evolution, while the third gives overviews of the evolution of important plant processes such as disease resistance, nodulation, hybridization, transposable elements and genome evolution, and polyploidy.
Polyploid and Hybrid Genomics
Author: Z. Jeffrey Chen
Publisher: John Wiley & Sons
ISBN: 1118552849
Category : Science
Languages : en
Pages : 646
Book Description
Polyploidy plays an important role in biological diversity, trait improvement, and plant species survival. Understanding the evolutionary phenomenon of polyploidy is a key challenge for plant and crop scientists. This book is made up of contributions from leading researchers in the field from around the world, providing a truly global review of the subject. Providing broad-ranging coverage, and up-to-date information from some of the world’s leading researchers, this book is an invaluable resource for geneticists, plant and crop scientists, and evolutionary biologists.
Publisher: John Wiley & Sons
ISBN: 1118552849
Category : Science
Languages : en
Pages : 646
Book Description
Polyploidy plays an important role in biological diversity, trait improvement, and plant species survival. Understanding the evolutionary phenomenon of polyploidy is a key challenge for plant and crop scientists. This book is made up of contributions from leading researchers in the field from around the world, providing a truly global review of the subject. Providing broad-ranging coverage, and up-to-date information from some of the world’s leading researchers, this book is an invaluable resource for geneticists, plant and crop scientists, and evolutionary biologists.
Evolution by Gene Duplication
Author: Susumu Ohno
Publisher: Springer Science & Business Media
ISBN: 364286659X
Category : Medical
Languages : en
Pages : 171
Book Description
It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.
Publisher: Springer Science & Business Media
ISBN: 364286659X
Category : Medical
Languages : en
Pages : 171
Book Description
It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.
The Rye Genome
Author: M. Timothy Rabanus-Wallace
Publisher: Springer Nature
ISBN: 3030833836
Category : Science
Languages : en
Pages : 251
Book Description
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.
Publisher: Springer Nature
ISBN: 3030833836
Category : Science
Languages : en
Pages : 251
Book Description
This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.
Plant Genome Diversity Volume 2
Author: Johann Greilhuber
Publisher: Springer Science & Business Media
ISBN: 3709111609
Category : Science
Languages : en
Pages : 360
Book Description
This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.
Publisher: Springer Science & Business Media
ISBN: 3709111609
Category : Science
Languages : en
Pages : 360
Book Description
This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.
Genomes of Plants and Animals
Author: J. Perry Gustafson
Publisher: Springer Science & Business Media
ISBN: 9780306453724
Category : Medical
Languages : en
Pages : 348
Book Description
This volume brings together the disciplines of plant and animal genome research, and serves as an opportunity for scientists from both fields to compare results, problems and prospects.
Publisher: Springer Science & Business Media
ISBN: 9780306453724
Category : Medical
Languages : en
Pages : 348
Book Description
This volume brings together the disciplines of plant and animal genome research, and serves as an opportunity for scientists from both fields to compare results, problems and prospects.
Polyploid Population Genetics and Evolution - From Theory to Practice
Author: Hans D. Daetwyler
Publisher: Frontiers Media SA
ISBN: 288963390X
Category :
Languages : en
Pages : 173
Book Description
Publisher: Frontiers Media SA
ISBN: 288963390X
Category :
Languages : en
Pages : 173
Book Description
Genetics of Adaptation
Author: Rodney Mauricio
Publisher: Springer Science & Business Media
ISBN: 1402038364
Category : Science
Languages : en
Pages : 207
Book Description
An enduring controversy in evolutionary biology is the genetic basis of adaptation. Darwin emphasized "many slight differences" as the ultimate source of variation to be acted upon by natural selection. In the early 1900’s, this view was opposed by "Mendelian geneticists", who emphasized the importance of "macromutations" in evolution. The Modern Synthesis resolved this controversy, concluding that mutations in genes of very small effect were responsible for adaptive evolution. A decade ago, Allen Orr and Jerry Coyne reexamined the evidence for this neo-Darwinian view and found that both the theoretical and empirical basis for it were weak. Orr and Coyne encouraged evolutionary biologists to reexamine this neglected question: what is the genetic basis of adaptive evolution? In this volume, a new generation of biologists have taken up this challenge. Using advances in both molecular genetic and statistical techniques, evolutionary geneticists have made considerable progress in this emerging field. In this volume, a diversity of examples from plant and animal studies provides valuable information for those interested in the genetics and evolution of complex traits.
Publisher: Springer Science & Business Media
ISBN: 1402038364
Category : Science
Languages : en
Pages : 207
Book Description
An enduring controversy in evolutionary biology is the genetic basis of adaptation. Darwin emphasized "many slight differences" as the ultimate source of variation to be acted upon by natural selection. In the early 1900’s, this view was opposed by "Mendelian geneticists", who emphasized the importance of "macromutations" in evolution. The Modern Synthesis resolved this controversy, concluding that mutations in genes of very small effect were responsible for adaptive evolution. A decade ago, Allen Orr and Jerry Coyne reexamined the evidence for this neo-Darwinian view and found that both the theoretical and empirical basis for it were weak. Orr and Coyne encouraged evolutionary biologists to reexamine this neglected question: what is the genetic basis of adaptive evolution? In this volume, a new generation of biologists have taken up this challenge. Using advances in both molecular genetic and statistical techniques, evolutionary geneticists have made considerable progress in this emerging field. In this volume, a diversity of examples from plant and animal studies provides valuable information for those interested in the genetics and evolution of complex traits.