Author: Vesselin Drensky
Publisher: Birkhäuser
ISBN: 3034879342
Category : Mathematics
Languages : en
Pages : 197
Book Description
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
Polynomial Identity Rings
Author: Vesselin Drensky
Publisher: Birkhäuser
ISBN: 3034879342
Category : Mathematics
Languages : en
Pages : 197
Book Description
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
Publisher: Birkhäuser
ISBN: 3034879342
Category : Mathematics
Languages : en
Pages : 197
Book Description
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
RINGS WITH POLYNOMIAL IDENTITIES AND FINITE DIMENSIONAL REPRESENTATIONS OF Algebras
Author: Eli Aljadeff
Publisher:
ISBN: 9781470456955
Category : PI-algebras
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781470456955
Category : PI-algebras
Languages : en
Pages :
Book Description
Polynomial Identities in Algebras
Author: Onofrio Mario Di Vincenzo
Publisher: Springer Nature
ISBN: 3030631117
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.
Publisher: Springer Nature
ISBN: 3030631117
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.
Rings with Generalized Identities
Author: Konstant I. Beidar
Publisher: CRC Press
ISBN: 9780824793258
Category : Mathematics
Languages : en
Pages : 546
Book Description
"Discusses the latest results concerning the area of noncommutative ring theory known as the theory of generalized identities (GIs)--detailing Kharchenko's results on GIs in prime rings, Chuang's extension to antiautomorphisms, and the use of the Beidar-Mikhalev theory of orthogonal completion in the semiprime case. Provides novel proofs of existing results."
Publisher: CRC Press
ISBN: 9780824793258
Category : Mathematics
Languages : en
Pages : 546
Book Description
"Discusses the latest results concerning the area of noncommutative ring theory known as the theory of generalized identities (GIs)--detailing Kharchenko's results on GIs in prime rings, Chuang's extension to antiautomorphisms, and the use of the Beidar-Mikhalev theory of orthogonal completion in the semiprime case. Provides novel proofs of existing results."
Rings with Polynomial Identities
Author: Claudio Procesi
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
Polynomial Identities and Asymptotic Methods
Author: A. Giambruno
Publisher: American Mathematical Soc.
ISBN: 0821838296
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book gives a state of the art approach to the study of polynomial identities satisfied by a given algebra by combining methods of ring theory, combinatorics, and representation theory of groups with analysis. The idea of applying analytical methods to the theory of polynomial identities appeared in the early 1970s and this approach has become one of the most powerful tools of the theory. A PI-algebra is any algebra satisfying at least one nontrivial polynomial identity. This includes the polynomial rings in one or several variables, the Grassmann algebra, finite-dimensional algebras, and many other algebras occurring naturally in mathematics. The core of the book is the proof that the sequence of co-dimensions of any PI-algebra has integral exponential growth - the PI-exponent of the algebra. Later chapters further apply these results to subjects such as a characterization of varieties of algebras having polynomial growth and a classification of varieties that are minimal for a given exponent.
Publisher: American Mathematical Soc.
ISBN: 0821838296
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book gives a state of the art approach to the study of polynomial identities satisfied by a given algebra by combining methods of ring theory, combinatorics, and representation theory of groups with analysis. The idea of applying analytical methods to the theory of polynomial identities appeared in the early 1970s and this approach has become one of the most powerful tools of the theory. A PI-algebra is any algebra satisfying at least one nontrivial polynomial identity. This includes the polynomial rings in one or several variables, the Grassmann algebra, finite-dimensional algebras, and many other algebras occurring naturally in mathematics. The core of the book is the proof that the sequence of co-dimensions of any PI-algebra has integral exponential growth - the PI-exponent of the algebra. Later chapters further apply these results to subjects such as a characterization of varieties of algebras having polynomial growth and a classification of varieties that are minimal for a given exponent.
Rings with Polynomial Identities and Finite Dimensional Representations of Algebras
Author: Eli Aljadeff
Publisher: American Mathematical Soc.
ISBN: 1470451743
Category : Education
Languages : en
Pages : 645
Book Description
A polynomial identity for an algebra (or a ring) A A is a polynomial in noncommutative variables that vanishes under any evaluation in A A. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley–Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.
Publisher: American Mathematical Soc.
ISBN: 1470451743
Category : Education
Languages : en
Pages : 645
Book Description
A polynomial identity for an algebra (or a ring) A A is a polynomial in noncommutative variables that vanishes under any evaluation in A A. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley–Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.
Neutrosophic Rings
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233209
Category : Mathematics
Languages : en
Pages : 154
Book Description
Research on algebraic structure of group rings is one of the leading, most sought-after topics in ring theory. The new class of neutrosophic rings defined in this book form a generalization of group rings and semigroup rings.The study of the classes of neutrosophic group neutrosophic rings and S-neutrosophic semigroup neutrosophic rings which form a type of generalization of group rings will throw light on group rings and semigroup rings which are essential substructures of them. A salient feature of this group is the many suggested problems on the new classes of neutrosophic rings, solutions of which will certainly develop some of the still open problems in group rings.Further, neutrosophic matrix rings find applications in neutrosophic models like Neutrosophic Cognitive Maps (NCM), Neutrosophic Relational Maps (NRM), Neutrosophic Bidirectional Memories (NBM) and so on.
Publisher: Infinite Study
ISBN: 1931233209
Category : Mathematics
Languages : en
Pages : 154
Book Description
Research on algebraic structure of group rings is one of the leading, most sought-after topics in ring theory. The new class of neutrosophic rings defined in this book form a generalization of group rings and semigroup rings.The study of the classes of neutrosophic group neutrosophic rings and S-neutrosophic semigroup neutrosophic rings which form a type of generalization of group rings will throw light on group rings and semigroup rings which are essential substructures of them. A salient feature of this group is the many suggested problems on the new classes of neutrosophic rings, solutions of which will certainly develop some of the still open problems in group rings.Further, neutrosophic matrix rings find applications in neutrosophic models like Neutrosophic Cognitive Maps (NCM), Neutrosophic Relational Maps (NRM), Neutrosophic Bidirectional Memories (NBM) and so on.
Polynomial Identities in Ring Theory
Author:
Publisher: Academic Press
ISBN: 0080874002
Category : Mathematics
Languages : en
Pages : 387
Book Description
Polynomial Identities in Ring Theory
Publisher: Academic Press
ISBN: 0080874002
Category : Mathematics
Languages : en
Pages : 387
Book Description
Polynomial Identities in Ring Theory
The Algebraic Structure of Group Rings
Author: Donald S. Passman
Publisher: Courier Corporation
ISBN: 0486482065
Category : Mathematics
Languages : en
Pages : 754
Book Description
"'Highly recommended' by the Bulletin of the London Mathematical Society, this book offers a comprehensive, self-contained treatment of group rings. The subject involves the intersection of two essentially different disciplines, group theory and ring theory. The Bulletin of the American Mathematical Society hailed this treatment as 'a majestic account,' proclaiming it "encyclopedic and lucid." 1985 edition"--
Publisher: Courier Corporation
ISBN: 0486482065
Category : Mathematics
Languages : en
Pages : 754
Book Description
"'Highly recommended' by the Bulletin of the London Mathematical Society, this book offers a comprehensive, self-contained treatment of group rings. The subject involves the intersection of two essentially different disciplines, group theory and ring theory. The Bulletin of the American Mathematical Society hailed this treatment as 'a majestic account,' proclaiming it "encyclopedic and lucid." 1985 edition"--