Author: Rui L. Reis
Publisher: Springer Science & Business Media
ISBN: 940100305X
Category : Science
Languages : en
Pages : 419
Book Description
Biodegradable, polymer-based systems are playing an increasingly pivotal role in tissue engineering replacement and regeneration. This type of biology-driven materials science is slated to be one of the key research areas of the 21st century. The following aspects are crucial: the development of adequate human cell culture to produce the tissues in adequate polymer scaffold materials; the development of culture technology with which human tissues can be grown ex-vivo in 3D polymer matrices; the development of material technology for producing the degradable, 3D matrices, having mechanical properties similar to natural tissue. In addressing these and similar problems, the book contains chapters on biodegradable polymers, polymeric biomaterials, surface modification for controlling cell-material interactions, scaffold design and processing, biomimetic coatings, biocompatibility evaluation, tissue engineering constructs, cell isolation, characterisation and culture, and controlled release of bioactive agents.
Polymer Based Systems on Tissue Engineering, Replacement and Regeneration
Author: Rui L. Reis
Publisher: Springer Science & Business Media
ISBN: 940100305X
Category : Science
Languages : en
Pages : 419
Book Description
Biodegradable, polymer-based systems are playing an increasingly pivotal role in tissue engineering replacement and regeneration. This type of biology-driven materials science is slated to be one of the key research areas of the 21st century. The following aspects are crucial: the development of adequate human cell culture to produce the tissues in adequate polymer scaffold materials; the development of culture technology with which human tissues can be grown ex-vivo in 3D polymer matrices; the development of material technology for producing the degradable, 3D matrices, having mechanical properties similar to natural tissue. In addressing these and similar problems, the book contains chapters on biodegradable polymers, polymeric biomaterials, surface modification for controlling cell-material interactions, scaffold design and processing, biomimetic coatings, biocompatibility evaluation, tissue engineering constructs, cell isolation, characterisation and culture, and controlled release of bioactive agents.
Publisher: Springer Science & Business Media
ISBN: 940100305X
Category : Science
Languages : en
Pages : 419
Book Description
Biodegradable, polymer-based systems are playing an increasingly pivotal role in tissue engineering replacement and regeneration. This type of biology-driven materials science is slated to be one of the key research areas of the 21st century. The following aspects are crucial: the development of adequate human cell culture to produce the tissues in adequate polymer scaffold materials; the development of culture technology with which human tissues can be grown ex-vivo in 3D polymer matrices; the development of material technology for producing the degradable, 3D matrices, having mechanical properties similar to natural tissue. In addressing these and similar problems, the book contains chapters on biodegradable polymers, polymeric biomaterials, surface modification for controlling cell-material interactions, scaffold design and processing, biomimetic coatings, biocompatibility evaluation, tissue engineering constructs, cell isolation, characterisation and culture, and controlled release of bioactive agents.
Biodegradable Systems in Tissue Engineering and Regenerative Medicine
Author: Rui L. Reis
Publisher: CRC Press
ISBN: 1135494428
Category : Medical
Languages : en
Pages : 920
Book Description
Conventional materials technology has yielded clear improvements in regenerative medicine. Ideally, however, a replacement material should mimic the living tissue mechanically, chemically, biologically and functionally. The use of tissue-engineered products based on novel biodegradable polymeric systems will lead to dramatic improvements in health
Publisher: CRC Press
ISBN: 1135494428
Category : Medical
Languages : en
Pages : 920
Book Description
Conventional materials technology has yielded clear improvements in regenerative medicine. Ideally, however, a replacement material should mimic the living tissue mechanically, chemically, biologically and functionally. The use of tissue-engineered products based on novel biodegradable polymeric systems will lead to dramatic improvements in health
Bone Tissue Engineering
Author: Jeffrey O. Hollinger
Publisher: CRC Press
ISBN: 1135501912
Category : Medical
Languages : en
Pages : 462
Book Description
Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t
Publisher: CRC Press
ISBN: 1135501912
Category : Medical
Languages : en
Pages : 462
Book Description
Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t
Polymers for Tissue Engineering
Author: M. Molly S. Shoichet
Publisher: VSP
ISBN: 9789067642897
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
The articles included in this text highlight the important advances in polymer science that impact tissue engineering. The breadth of polymer science is well represented with the relevance of both polymer chemistry and morphology emphasized in terms of cell and tissue response.
Publisher: VSP
ISBN: 9789067642897
Category : Technology & Engineering
Languages : en
Pages : 460
Book Description
The articles included in this text highlight the important advances in polymer science that impact tissue engineering. The breadth of polymer science is well represented with the relevance of both polymer chemistry and morphology emphasized in terms of cell and tissue response.
Drug Delivery Systems
Author: Kewal K. Jain
Publisher: Springer Science & Business Media
ISBN: 1588298914
Category : Science
Languages : en
Pages : 255
Book Description
In this concise and systematic book, a team of experts select the most important, cutting-edge technologies used in drug delivery systems. They take into account significant drugs, new technologies such as nanoparticles, and therapeutic applications. The chapters present step-by-step laboratory protocols following the highly successful Methods in Molecular BiologyTM series format, offering readily reproducible results vital for pharmaceutical physicians and scientists.
Publisher: Springer Science & Business Media
ISBN: 1588298914
Category : Science
Languages : en
Pages : 255
Book Description
In this concise and systematic book, a team of experts select the most important, cutting-edge technologies used in drug delivery systems. They take into account significant drugs, new technologies such as nanoparticles, and therapeutic applications. The chapters present step-by-step laboratory protocols following the highly successful Methods in Molecular BiologyTM series format, offering readily reproducible results vital for pharmaceutical physicians and scientists.
Bionanocomposites in Tissue Engineering and Regenerative Medicine
Author: Shakeel Ahmed
Publisher: Elsevier
ISBN: 0128212802
Category : Medical
Languages : en
Pages : 672
Book Description
Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites - offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups. Each bionanocomposite type is covered individually, providing specific and detailed information for each material Covers a range of tissue engineering and regenerative medicine applications, from dental and bone engineering to cancer therapy Offers an integrated approach, with contributions from authors across a variety of related disciplines, including biomedical engineering, chemistry and materials science
Publisher: Elsevier
ISBN: 0128212802
Category : Medical
Languages : en
Pages : 672
Book Description
Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites - offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups. Each bionanocomposite type is covered individually, providing specific and detailed information for each material Covers a range of tissue engineering and regenerative medicine applications, from dental and bone engineering to cancer therapy Offers an integrated approach, with contributions from authors across a variety of related disciplines, including biomedical engineering, chemistry and materials science
Frontiers in Tissue Engineering
Author: C.W. Patrick
Publisher: Elsevier
ISBN: 0080532055
Category : Technology & Engineering
Languages : en
Pages : 717
Book Description
Frontiers in Tissue Engineering is a carefully edited compilation of state-of-the-art contributions from an international authorship of experts in the diverse subjects that make up tissue engineering. A broad representation of the medical, scientific, industrial and regulatory community is detailed in the book. The work is an authoritative and comprehensive reference source for scientists and clinicians working in this emerging field. The book is divided into three parts: fundamentals and methods of tissue engineering, tissue engineering applied to specialised tissues, and tissue engineering applied to organs. The text offers many novel approaches, including a detailed coverage of cell-tissue interactions at cellular and molecular levels; cell-tissue surface, biochemical, and mechanical environments; biomaterials; engineering design; tissue-organ function; new approaches to tissue-organ regeneration and replacement of function; ethical considerations of tissue engineering; and government regulation of tissue-engineered products.
Publisher: Elsevier
ISBN: 0080532055
Category : Technology & Engineering
Languages : en
Pages : 717
Book Description
Frontiers in Tissue Engineering is a carefully edited compilation of state-of-the-art contributions from an international authorship of experts in the diverse subjects that make up tissue engineering. A broad representation of the medical, scientific, industrial and regulatory community is detailed in the book. The work is an authoritative and comprehensive reference source for scientists and clinicians working in this emerging field. The book is divided into three parts: fundamentals and methods of tissue engineering, tissue engineering applied to specialised tissues, and tissue engineering applied to organs. The text offers many novel approaches, including a detailed coverage of cell-tissue interactions at cellular and molecular levels; cell-tissue surface, biochemical, and mechanical environments; biomaterials; engineering design; tissue-organ function; new approaches to tissue-organ regeneration and replacement of function; ethical considerations of tissue engineering; and government regulation of tissue-engineered products.
Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles
Author: Venkatram Prasad Shastri
Publisher: Springer
ISBN: 9048187907
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.
Publisher: Springer
ISBN: 9048187907
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.
Natural and Synthetic Biomedical Polymers
Author: Sangamesh G. Kum bar
Publisher: Newnes
ISBN: 0123972906
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future
Publisher: Newnes
ISBN: 0123972906
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future
In Situ Tissue Regeneration
Author: Sang Jin Lee
Publisher: Academic Press
ISBN: 012802500X
Category : Medical
Languages : en
Pages : 460
Book Description
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry
Publisher: Academic Press
ISBN: 012802500X
Category : Medical
Languages : en
Pages : 460
Book Description
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry