Author: Harpreet S. Dhillon
Publisher: Springer Nature
ISBN: 303102379X
Category : Computers
Languages : en
Pages : 131
Book Description
This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.
Poisson Line Cox Process
Author: Harpreet S. Dhillon
Publisher: Springer Nature
ISBN: 303102379X
Category : Computers
Languages : en
Pages : 131
Book Description
This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.
Publisher: Springer Nature
ISBN: 303102379X
Category : Computers
Languages : en
Pages : 131
Book Description
This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.
Poisson Line Cox Process
Author: Harpreet S. Dhillon
Publisher: Morgan & Claypool Publishers
ISBN: 1681738430
Category : Computers
Languages : en
Pages : 151
Book Description
This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.
Publisher: Morgan & Claypool Publishers
ISBN: 1681738430
Category : Computers
Languages : en
Pages : 151
Book Description
This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.
Lectures on the Poisson Process
Author: Günter Last
Publisher: Cambridge University Press
ISBN: 1107088011
Category : Mathematics
Languages : en
Pages : 315
Book Description
A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.
Publisher: Cambridge University Press
ISBN: 1107088011
Category : Mathematics
Languages : en
Pages : 315
Book Description
A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.
Point Processes
Author: D.R. Cox
Publisher: Routledge
ISBN: 135142386X
Category : Mathematics
Languages : en
Pages : 188
Book Description
There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.
Publisher: Routledge
ISBN: 135142386X
Category : Mathematics
Languages : en
Pages : 188
Book Description
There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.
Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA
Author: Elias T. Krainski
Publisher: CRC Press
ISBN: 0429629850
Category : Mathematics
Languages : en
Pages : 284
Book Description
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Publisher: CRC Press
ISBN: 0429629850
Category : Mathematics
Languages : en
Pages : 284
Book Description
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Mixed Poisson Processes
Author: J Grandell
Publisher: CRC Press
ISBN: 1000109992
Category : Mathematics
Languages : en
Pages : 281
Book Description
To date, Mixed Poisson processes have been studied by scientists primarily interested in either insurance mathematics or point processes. Work in one area has often been carried out without knowledge of the other area. Mixed Poisson Processes is the first book to combine and concentrate on these two themes, and to distinguish between the notions of distributions and processes. The first part of the text gives special emphasis to the estimation of the underlying intensity, thinning, infinite divisibility, and reliability properties. The second part is, to a greater extent, based on Lundberg's thesis.
Publisher: CRC Press
ISBN: 1000109992
Category : Mathematics
Languages : en
Pages : 281
Book Description
To date, Mixed Poisson processes have been studied by scientists primarily interested in either insurance mathematics or point processes. Work in one area has often been carried out without knowledge of the other area. Mixed Poisson Processes is the first book to combine and concentrate on these two themes, and to distinguish between the notions of distributions and processes. The first part of the text gives special emphasis to the estimation of the underlying intensity, thinning, infinite divisibility, and reliability properties. The second part is, to a greater extent, based on Lundberg's thesis.
Stochastic Geometry
Author: David Coupier
Publisher: Springer
ISBN: 3030135470
Category : Mathematics
Languages : en
Pages : 240
Book Description
This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.
Publisher: Springer
ISBN: 3030135470
Category : Mathematics
Languages : en
Pages : 240
Book Description
This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.
An Introduction to the Theory of Point Processes
Author: D.J. Daley
Publisher: Springer Science & Business Media
ISBN: 0387215646
Category : Mathematics
Languages : en
Pages : 487
Book Description
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.
Publisher: Springer Science & Business Media
ISBN: 0387215646
Category : Mathematics
Languages : en
Pages : 487
Book Description
Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.
Stochastic Geometry and Its Applications
Author: Sung Nok Chiu
Publisher: John Wiley & Sons
ISBN: 1118658256
Category : Mathematics
Languages : en
Pages : 561
Book Description
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
Publisher: John Wiley & Sons
ISBN: 1118658256
Category : Mathematics
Languages : en
Pages : 561
Book Description
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
6G Mobile Wireless Networks
Author: Yulei Wu
Publisher: Springer Nature
ISBN: 3030727777
Category : Computers
Languages : en
Pages : 472
Book Description
This book is the world’s first book on 6G Mobile Wireless Networks that aims to provide a comprehensive understanding of key drivers, use cases, research requirements, challenges and open issues that are expected to drive 6G research. In this book, we have invited world-renowned experts from industry and academia to share their thoughts on different aspects of 6G research. Specifically, this book covers the following topics: 6G Use Cases, Requirements, Metrics and Enabling Technologies, PHY Technologies for 6G Wireless, Reconfigurable Intelligent Surface for 6G Wireless Networks, Millimeter-wave and Terahertz Spectrum for 6G Wireless, Challenges in Transport Layer for Tbit/s Communications, High-capacity Backhaul Connectivity for 6G Wireless, Cloud Native Approach for 6G Wireless Networks, Machine Type Communications in 6G, Edge Intelligence and Pervasive AI in 6G, Blockchain: Foundations and Role in 6G, Role of Open-source Platforms in 6G, and Quantum Computing and 6G Wireless. The overarching aim of this book is to explore the evolution from current 5G networks towards the future 6G networks from a service, air interface and network perspective, thereby laying out a vision for 6G networks. This book not only discusses the potential 6G use cases, requirements, metrics and enabling technologies, but also discusses the emerging technologies and topics such as 6G PHY technologies, reconfigurable intelligent surface, millimeter-wave and THz communications, visible light communications, transport layer for Tbit/s communications, high-capacity backhaul connectivity, cloud native approach, machine-type communications, edge intelligence and pervasive AI, network security and blockchain, and the role of open-source platform in 6G. This book provides a systematic treatment of the state-of-the-art in these emerging topics and their role in supporting a wide variety of verticals in the future. As such, it provides a comprehensive overview of the expected applications of 6G with a detailed discussion of their requirements and possible enabling technologies. This book also outlines the possible challenges and research directions to facilitate the future research and development of 6G mobile wireless networks.
Publisher: Springer Nature
ISBN: 3030727777
Category : Computers
Languages : en
Pages : 472
Book Description
This book is the world’s first book on 6G Mobile Wireless Networks that aims to provide a comprehensive understanding of key drivers, use cases, research requirements, challenges and open issues that are expected to drive 6G research. In this book, we have invited world-renowned experts from industry and academia to share their thoughts on different aspects of 6G research. Specifically, this book covers the following topics: 6G Use Cases, Requirements, Metrics and Enabling Technologies, PHY Technologies for 6G Wireless, Reconfigurable Intelligent Surface for 6G Wireless Networks, Millimeter-wave and Terahertz Spectrum for 6G Wireless, Challenges in Transport Layer for Tbit/s Communications, High-capacity Backhaul Connectivity for 6G Wireless, Cloud Native Approach for 6G Wireless Networks, Machine Type Communications in 6G, Edge Intelligence and Pervasive AI in 6G, Blockchain: Foundations and Role in 6G, Role of Open-source Platforms in 6G, and Quantum Computing and 6G Wireless. The overarching aim of this book is to explore the evolution from current 5G networks towards the future 6G networks from a service, air interface and network perspective, thereby laying out a vision for 6G networks. This book not only discusses the potential 6G use cases, requirements, metrics and enabling technologies, but also discusses the emerging technologies and topics such as 6G PHY technologies, reconfigurable intelligent surface, millimeter-wave and THz communications, visible light communications, transport layer for Tbit/s communications, high-capacity backhaul connectivity, cloud native approach, machine-type communications, edge intelligence and pervasive AI, network security and blockchain, and the role of open-source platform in 6G. This book provides a systematic treatment of the state-of-the-art in these emerging topics and their role in supporting a wide variety of verticals in the future. As such, it provides a comprehensive overview of the expected applications of 6G with a detailed discussion of their requirements and possible enabling technologies. This book also outlines the possible challenges and research directions to facilitate the future research and development of 6G mobile wireless networks.