Author: Vinod Krishan
Publisher: Cambridge University Press
ISBN: 1107037573
Category : Science
Languages : en
Pages : 271
Book Description
"Develops a discussion about plasma, the first state of matter from which evolved the other three states"--Provided by publisher.
Plasmas
Author: Vinod Krishan
Publisher: Cambridge University Press
ISBN: 1107037573
Category : Science
Languages : en
Pages : 271
Book Description
"Develops a discussion about plasma, the first state of matter from which evolved the other three states"--Provided by publisher.
Publisher: Cambridge University Press
ISBN: 1107037573
Category : Science
Languages : en
Pages : 271
Book Description
"Develops a discussion about plasma, the first state of matter from which evolved the other three states"--Provided by publisher.
Quantum Plasmas
Author: Fernando Haas
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
The Physics of Laser Plasmas and Applications - Volume 1
Author: Hideaki Takabe
Publisher: Springer Nature
ISBN: 3030496139
Category : Science
Languages : en
Pages : 399
Book Description
The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.
Publisher: Springer Nature
ISBN: 3030496139
Category : Science
Languages : en
Pages : 399
Book Description
The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.
The Physics of Plasmas
Author: T. J. M. Boyd
Publisher: Cambridge University Press
ISBN: 9780521459129
Category : Science
Languages : en
Pages : 548
Book Description
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.
Publisher: Cambridge University Press
ISBN: 9780521459129
Category : Science
Languages : en
Pages : 548
Book Description
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.
Physics of High Temperature Plasmas
Author: George Schmidt
Publisher: Elsevier
ISBN: 0323161766
Category : Science
Languages : en
Pages : 423
Book Description
Physics of High Temperature Plasmas, Second Edition focuses on plasma physics and the advances in this field. This book explores the experimental observations on linear waves and instabilities. Comprised of 11 chapters, this edition begins with an overview of heat transition as a result of the heating of a solid or liquid substance. This book then examines the behavior of plasmas, which has great significance for the understanding of our universe. This text also investigates the possible application of plasmas, such as the application of hot plasma as thermonuclear fuel. Other chapters discuss the laws of plasma physics, with emphasis on those phenomena that are relevant to the operation of thermonuclear machines. This text discusses as well the electromagnetic forces on an earthly scale, the quantum effects, particle collisions, and Maxwell's equation. The final chapter of the book deals with the motion of charged particles. This book is intended for researchers engaged in plasma research and graduate students taking a course in plasma physics.
Publisher: Elsevier
ISBN: 0323161766
Category : Science
Languages : en
Pages : 423
Book Description
Physics of High Temperature Plasmas, Second Edition focuses on plasma physics and the advances in this field. This book explores the experimental observations on linear waves and instabilities. Comprised of 11 chapters, this edition begins with an overview of heat transition as a result of the heating of a solid or liquid substance. This book then examines the behavior of plasmas, which has great significance for the understanding of our universe. This text also investigates the possible application of plasmas, such as the application of hot plasma as thermonuclear fuel. Other chapters discuss the laws of plasma physics, with emphasis on those phenomena that are relevant to the operation of thermonuclear machines. This text discusses as well the electromagnetic forces on an earthly scale, the quantum effects, particle collisions, and Maxwell's equation. The final chapter of the book deals with the motion of charged particles. This book is intended for researchers engaged in plasma research and graduate students taking a course in plasma physics.
Handbook of Thermal Plasmas
Author: Maher I. Boulos
Publisher: Springer
ISBN: 9783030849344
Category : Science
Languages : en
Pages : 0
Book Description
This authoritative reference presents a comprehensive review of the evolution of plasma science and technology fundamentals over the past five decades. One of this field’s principal challenges has been its multidisciplinary nature requiring coverage of fundamental plasma physics in plasma generation, transport phenomena under high-temperature conditions, involving momentum, heat and mass transfer, and high-temperature reaction kinetics, as well as fundamentals of material science under extreme conditions. The book is structured in five distinct parts, which are presented in a reader-friendly format allowing for detailed coverage of the science base and engineering aspects of the technology including plasma generation, mathematical modeling, diagnostics, and industrial applications of thermal plasma technology. This book is an essential resource for practicing engineers, research scientists, and graduate students working in the field.
Publisher: Springer
ISBN: 9783030849344
Category : Science
Languages : en
Pages : 0
Book Description
This authoritative reference presents a comprehensive review of the evolution of plasma science and technology fundamentals over the past five decades. One of this field’s principal challenges has been its multidisciplinary nature requiring coverage of fundamental plasma physics in plasma generation, transport phenomena under high-temperature conditions, involving momentum, heat and mass transfer, and high-temperature reaction kinetics, as well as fundamentals of material science under extreme conditions. The book is structured in five distinct parts, which are presented in a reader-friendly format allowing for detailed coverage of the science base and engineering aspects of the technology including plasma generation, mathematical modeling, diagnostics, and industrial applications of thermal plasma technology. This book is an essential resource for practicing engineers, research scientists, and graduate students working in the field.
Physics of Collisional Plasmas
Author: Michel Moisan
Publisher: Springer Science & Business Media
ISBN: 9400745583
Category : Science
Languages : en
Pages : 488
Book Description
This text is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter introduces with progressively increasing detail, the fundamental concepts of plasma physic. The motion of individual charged particles in various configurations of electric and magnetic fields is detailed in the second chapter while the third chapter considers the collective motion of the plasma particles described according to a hydrodynamic model. The fourth chapter is most original in that it introduces a general approach to energy balance, valid for all types of discharges comprising direct current(DC) and high frequency (HF) discharges, including an applied static magnetic field. The basic concepts required in this fourth chapter have been progressively introduced in the previous chapters. The text is enriched with approx. 100 figures, and alphabetical index and 45 fully resolved problems. Mathematical and physical appendices provide complementary information or allow to go deeper in a given subject.
Publisher: Springer Science & Business Media
ISBN: 9400745583
Category : Science
Languages : en
Pages : 488
Book Description
This text is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter introduces with progressively increasing detail, the fundamental concepts of plasma physic. The motion of individual charged particles in various configurations of electric and magnetic fields is detailed in the second chapter while the third chapter considers the collective motion of the plasma particles described according to a hydrodynamic model. The fourth chapter is most original in that it introduces a general approach to energy balance, valid for all types of discharges comprising direct current(DC) and high frequency (HF) discharges, including an applied static magnetic field. The basic concepts required in this fourth chapter have been progressively introduced in the previous chapters. The text is enriched with approx. 100 figures, and alphabetical index and 45 fully resolved problems. Mathematical and physical appendices provide complementary information or allow to go deeper in a given subject.
Plasma and High Frequency Processes for Obtaining and Processing Materials in the Nuclear Fuel Cycle
Author: I. N. Toumanov
Publisher: Nova Publishers
ISBN: 9781590330098
Category : Business & Economics
Languages : en
Pages : 628
Book Description
Plasma & High Frequency Processes for Obtaining & Processing Materials in the Nuclear Fuel Cycle
Publisher: Nova Publishers
ISBN: 9781590330098
Category : Business & Economics
Languages : en
Pages : 628
Book Description
Plasma & High Frequency Processes for Obtaining & Processing Materials in the Nuclear Fuel Cycle
Basic Principles Of Plasma Physics
Author: Setsuo Ichimaru
Publisher: CRC Press
ISBN: 0429970668
Category : Science
Languages : en
Pages : 352
Book Description
The book describes a statistical approach to the basics of plasma physics.
Publisher: CRC Press
ISBN: 0429970668
Category : Science
Languages : en
Pages : 352
Book Description
The book describes a statistical approach to the basics of plasma physics.
Nonlinear Physics of Plasmas
Author: Mitsuo Kono
Publisher: Springer Science & Business Media
ISBN: 3642146945
Category : Science
Languages : en
Pages : 540
Book Description
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Publisher: Springer Science & Business Media
ISBN: 3642146945
Category : Science
Languages : en
Pages : 540
Book Description
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.