Planar Double-Gate Transistor

Planar Double-Gate Transistor PDF Author: Amara Amara
Publisher: Springer Science & Business Media
ISBN: 1402093411
Category : Technology & Engineering
Languages : en
Pages : 215

Get Book Here

Book Description
Until the 1990s, the reduction of the minimum feature sizes used to fabricate in- grated circuits, called “scaling”, has highlighted serious advantages as integration density, speed, power consumption, functionality and cost. Direct consequence was the decrease of cost-per-function, so the electronic productivity has largely progressed in this period. Another usually cited trend is the evolution of the in- gration density as expressed by the well-know Moore’s Law in 1975: the number of devices per chip doubles every 2 years. This evolution has allowed improving signi?cantly the circuit complexity, offering a great computing power in the case of microprocessor, for example. However, since few years, signi?cant issues appeared such as the increase of the circuit heating, device complexity, variability and dif?culties to improve the integration density. These new trends generate an important growth in development and production costs. Though is it, since 40 years, the evolution of the microelectronics always f- lowed the Moore’s law and each dif?culty has found a solution.

Planar Double-Gate Transistor

Planar Double-Gate Transistor PDF Author: Amara Amara
Publisher: Springer Science & Business Media
ISBN: 1402093411
Category : Technology & Engineering
Languages : en
Pages : 215

Get Book Here

Book Description
Until the 1990s, the reduction of the minimum feature sizes used to fabricate in- grated circuits, called “scaling”, has highlighted serious advantages as integration density, speed, power consumption, functionality and cost. Direct consequence was the decrease of cost-per-function, so the electronic productivity has largely progressed in this period. Another usually cited trend is the evolution of the in- gration density as expressed by the well-know Moore’s Law in 1975: the number of devices per chip doubles every 2 years. This evolution has allowed improving signi?cantly the circuit complexity, offering a great computing power in the case of microprocessor, for example. However, since few years, signi?cant issues appeared such as the increase of the circuit heating, device complexity, variability and dif?culties to improve the integration density. These new trends generate an important growth in development and production costs. Though is it, since 40 years, the evolution of the microelectronics always f- lowed the Moore’s law and each dif?culty has found a solution.

Planar Double-Gate Transistor

Planar Double-Gate Transistor PDF Author: Amara Amara
Publisher: Springer
ISBN: 9781402093289
Category : Technology & Engineering
Languages : en
Pages : 211

Get Book Here

Book Description
Until the 1990s, the reduction of the minimum feature sizes used to fabricate in- grated circuits, called “scaling”, has highlighted serious advantages as integration density, speed, power consumption, functionality and cost. Direct consequence was the decrease of cost-per-function, so the electronic productivity has largely progressed in this period. Another usually cited trend is the evolution of the in- gration density as expressed by the well-know Moore’s Law in 1975: the number of devices per chip doubles every 2 years. This evolution has allowed improving signi?cantly the circuit complexity, offering a great computing power in the case of microprocessor, for example. However, since few years, signi?cant issues appeared such as the increase of the circuit heating, device complexity, variability and dif?culties to improve the integration density. These new trends generate an important growth in development and production costs. Though is it, since 40 years, the evolution of the microelectronics always f- lowed the Moore’s law and each dif?culty has found a solution.

Case Studies on Variation Tolerant and Low Power Design Using Planar Asymmetric Double Gate Transistor

Case Studies on Variation Tolerant and Low Power Design Using Planar Asymmetric Double Gate Transistor PDF Author: Amrinder Singh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In nanometer technologies, process variation control and low power have emerged as the first order design goal after high performance. Process variations cause high variability in performance and power consumption of an IC, which affects the overall yield. Short channel effects (SCEs) deteriorate the MOSFET performance and lead to higher leakage power. Double gate devices suppress SCEs and are potential candidates for replacing Bulk technology in nanometer nodes. Threshold voltage control in planar asymmetric double gate transistor (IGFET) using a fourth terminal provides an effective means of combating process variations and low power design. In this thesis, using various case studies, we analyzed the suitability of IGFET for variation control and low power design. We also performed an extensive comparison between IGFET and Bulk for reducing variability, improving yield and leakage power reduction using power gating. We also proposed a new circuit topology for IGFET, which on average shows 33.8 percent lower leakage and 34.9 percent lower area at the cost of 2.8 percent increase in total active mode power, for basic logic gates. Finally, we showed a technique for reducing leakage of minimum sized devices designed using new circuit topology for IGFET.

FinFETs and Other Multi-Gate Transistors

FinFETs and Other Multi-Gate Transistors PDF Author: J.-P. Colinge
Publisher: Springer Science & Business Media
ISBN: 038771751X
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book Here

Book Description
This book explains the physics and properties of multi-gate field-effect transistors (MuGFETs), how they are made and how circuit designers can use them to improve the performances of integrated circuits. It covers the emergence of quantum effects due to the reduced size of the devices and describes the evolution of the MOS transistor from classical structures to SOI (silicon-on-insulator) and then to MuGFETs.

Modelling and Simulation of Nanoscale Non-planar Double Gate Metal-oxide-semiconductor Field Effect Transistor

Modelling and Simulation of Nanoscale Non-planar Double Gate Metal-oxide-semiconductor Field Effect Transistor PDF Author: Munawar Agus Riyadi
Publisher:
ISBN:
Category : Nanoelectromechanical systems
Languages : en
Pages : 230

Get Book Here

Book Description


Semiconductor Wafer Bonding 9: Science, Technology, and Applications

Semiconductor Wafer Bonding 9: Science, Technology, and Applications PDF Author: Helmut Baumgart
Publisher: The Electrochemical Society
ISBN: 156677506X
Category : Microelectromechanical systems
Languages : en
Pages : 398

Get Book Here

Book Description
This issue of ECS Transactions covers state-of-the-art R&D results of the last 1.5 years in the field of semiconductor wafer bonding technology. Wafer Bonding Technology can be used to create novel composite materials systems and devices what would otherwise be unattainable. Wafer bonding today is rapidly expanding applications in such diverse fields as photonics, sensors, MEMS, X-ray optics, non-electronic microstructures, high performance CMOS platforms for high end servers, Si-Ge, strained SOI, Germanium-on-Insulator (GeOI), and Nanotechnologies.

Strain-Engineered MOSFETs

Strain-Engineered MOSFETs PDF Author: C.K. Maiti
Publisher: CRC Press
ISBN: 1466503475
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in strain-engineered MOSFETS implemented in high-mobility substrates such as, Ge, SiGe, strained-Si, ultrathin germanium-on-insulator platforms, combined with high-k insulators and metal-gate. It covers the materials aspects, principles, and design of advanced devices, fabrication, and applications. It also presents a full technology computer aided design (TCAD) methodology for strain-engineering in Si-CMOS technology involving data flow from process simulation to process variability simulation via device simulation and generation of SPICE process compact models for manufacturing for yield optimization. Microelectronics fabrication is facing serious challenges due to the introduction of new materials in manufacturing and fundamental limitations of nanoscale devices that result in increasing unpredictability in the characteristics of the devices. The down scaling of CMOS technologies has brought about the increased variability of key parameters affecting the performance of integrated circuits. This book provides a single text that combines coverage of the strain-engineered MOSFETS and their modeling using TCAD, making it a tool for process technology development and the design of strain-engineered MOSFETs.

Design and Development of Efficient Energy Systems

Design and Development of Efficient Energy Systems PDF Author: Suman Lata Tripathi
Publisher: John Wiley & Sons
ISBN: 1119761638
Category : Computers
Languages : en
Pages : 386

Get Book Here

Book Description
There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.

Semiconductor Wafer Bonding VIII : Science, Technology, and Applications

Semiconductor Wafer Bonding VIII : Science, Technology, and Applications PDF Author:
Publisher: The Electrochemical Society
ISBN: 9781566774604
Category : Microelectromechanical systems
Languages : en
Pages : 476

Get Book Here

Book Description


Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors

Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors PDF Author: Farzan Jazaeri
Publisher: Cambridge University Press
ISBN: 1108581390
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
The first book on the topic, this is a comprehensive introduction to the modeling and design of junctionless field effect transistors (FETs). Beginning with a discussion of the advantages and limitations of the technology, the authors also provide a thorough overview of published analytical models for double-gate and nanowire configurations, before offering a general introduction to the EPFL charge-based model of junctionless FETs. Important features are introduced gradually, including nanowire versus double-gate equivalence, technological design space, junctionless FET performances, short channel effects, transcapacitances, asymmetric operation, thermal noise, interface traps, and the junction FET. Additional features compatible with biosensor applications are also discussed. This is a valuable resource for students and researchers looking to understand more about this new and fast developing field.