Author: Richard Benedict Goldschmidt
Publisher: Legare Street Press
ISBN: 9781017206043
Category : History
Languages : en
Pages : 0
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Physiological Genetics
Author: Richard Benedict Goldschmidt
Publisher: Legare Street Press
ISBN: 9781017206043
Category : History
Languages : en
Pages : 0
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Legare Street Press
ISBN: 9781017206043
Category : History
Languages : en
Pages : 0
Book Description
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Physiological Genetics
Author: John G. Scandalios
Publisher: Academic Press
ISBN: 148327022X
Category : Science
Languages : en
Pages : 293
Book Description
Physiological Genetics is a compilation of developments, contributed by experts in the field of physiological genetics. The articles contained in the book covers various accounts of developments in the field. The book starts with an introductory chapter describing genetic factors in developmental gene regulation, followed by discussions on enzyme differentiation, hormonal control of gene expression, biochemical genetics of morphogenesis, cytoplasmic male sterility in maize, plant somatic cell genetics, and the population dynamics of genetic polymorphism. Physiologists, biologists, geneticists, and students will find a valuable reference material.
Publisher: Academic Press
ISBN: 148327022X
Category : Science
Languages : en
Pages : 293
Book Description
Physiological Genetics is a compilation of developments, contributed by experts in the field of physiological genetics. The articles contained in the book covers various accounts of developments in the field. The book starts with an introductory chapter describing genetic factors in developmental gene regulation, followed by discussions on enzyme differentiation, hormonal control of gene expression, biochemical genetics of morphogenesis, cytoplasmic male sterility in maize, plant somatic cell genetics, and the population dynamics of genetic polymorphism. Physiologists, biologists, geneticists, and students will find a valuable reference material.
Petunia
Author: Tom Gerats
Publisher: Springer Science & Business Media
ISBN: 0387847960
Category : Science
Languages : en
Pages : 451
Book Description
Petunia belongs to the family of the Solanaceae and as such is closely related to important crop species like tomato, potato, eggplant, pepper and tobacco. With around 35 species described it is one of the smaller genera and among those there are two groups of species that make up the majority of them: the purple flowered P.integrifolia group and the white flowered P.axillaris group. It is assumed that interspecific hybrids between members of these two groups have laid the foundation for the huge variation in cultivars as selected from the 1830’s onwards. Petunia thus has been a commercially important ornamental since the early days of horticulture. Despite that, Petunia was in use as a research model only parsimoniously until the late fifties of the last century. By then seed companies started to fund academic research, initially with the main aim to develop new color varieties. Besides a moment of glory around 1980 (being elected a promising model system, just prior to the Arabidopsis boom), Petunia has long been a system in the shadow. Up to the early eighties no more then five groups developed classical and biochemical genetics, almost exclusively on flower color genes. Then from the early eighties onward, interest has slowly been growing and nowadays some 20-25 academic groups around the world are using Petunia as their main model system for a variety of research purposes, while a number of smaller and larger companies are developing further new varieties. At present the system is gaining credibility for a number of reasons, a very important one being that it is now generally realized that only comparative biology will reveal the real roots of evolutionary development of processes like pollination syndromes, floral development, scent emission, seed survival strategies and the like. As a system to work with, Petunia combines advantages from several other model species: it is easy to grow, sets abundant seeds, while self- and cross pollination is easy; its lifecycle is four months from seed to seed; plants can be grown very densely, in 1 cm2 plugs and can be rescued easily upon flowering, which makes even huge selection plots easy to handle. Its flowers (and indeed leaves) are relatively large and thus obtaining biochemical samples is no problem. Moreover, transformation and regeneration from leaf disc or protoplast are long established and easy-to-perform procedures. On top of this easiness in culture, Petunia harbors an endogenous, very active transposable element system, which is being used to great advantage in both forward and reverse genetics screens. The virtues of Petunia as a model system have only partly been highlighted. In a first monograph, edited by K. Sink and published in 1984, the emphasis was mainly on taxonomy, morphology, classical and biochemical genetics, cytogenetics, physiology and a number of topical subjects. At that time, little molecular data was available. Taking into account that that first monograph will be offered electronically as a supplement in this upcoming edition, we would like to put the overall emphasis for the second edition on molecular developments and on comparative issues. To this end we propose the underneath set up, where chapters will be brief and topical. Each chapter will present the historical setting of its subject, the comparison with other systems (if available) and the unique progress as made in Petunia. We expect that the second edition of the Petunia monograph will draw a broad readership both in academia and industry and hope that it will contribute to a further expansion in research on this wonderful Solanaceae.
Publisher: Springer Science & Business Media
ISBN: 0387847960
Category : Science
Languages : en
Pages : 451
Book Description
Petunia belongs to the family of the Solanaceae and as such is closely related to important crop species like tomato, potato, eggplant, pepper and tobacco. With around 35 species described it is one of the smaller genera and among those there are two groups of species that make up the majority of them: the purple flowered P.integrifolia group and the white flowered P.axillaris group. It is assumed that interspecific hybrids between members of these two groups have laid the foundation for the huge variation in cultivars as selected from the 1830’s onwards. Petunia thus has been a commercially important ornamental since the early days of horticulture. Despite that, Petunia was in use as a research model only parsimoniously until the late fifties of the last century. By then seed companies started to fund academic research, initially with the main aim to develop new color varieties. Besides a moment of glory around 1980 (being elected a promising model system, just prior to the Arabidopsis boom), Petunia has long been a system in the shadow. Up to the early eighties no more then five groups developed classical and biochemical genetics, almost exclusively on flower color genes. Then from the early eighties onward, interest has slowly been growing and nowadays some 20-25 academic groups around the world are using Petunia as their main model system for a variety of research purposes, while a number of smaller and larger companies are developing further new varieties. At present the system is gaining credibility for a number of reasons, a very important one being that it is now generally realized that only comparative biology will reveal the real roots of evolutionary development of processes like pollination syndromes, floral development, scent emission, seed survival strategies and the like. As a system to work with, Petunia combines advantages from several other model species: it is easy to grow, sets abundant seeds, while self- and cross pollination is easy; its lifecycle is four months from seed to seed; plants can be grown very densely, in 1 cm2 plugs and can be rescued easily upon flowering, which makes even huge selection plots easy to handle. Its flowers (and indeed leaves) are relatively large and thus obtaining biochemical samples is no problem. Moreover, transformation and regeneration from leaf disc or protoplast are long established and easy-to-perform procedures. On top of this easiness in culture, Petunia harbors an endogenous, very active transposable element system, which is being used to great advantage in both forward and reverse genetics screens. The virtues of Petunia as a model system have only partly been highlighted. In a first monograph, edited by K. Sink and published in 1984, the emphasis was mainly on taxonomy, morphology, classical and biochemical genetics, cytogenetics, physiology and a number of topical subjects. At that time, little molecular data was available. Taking into account that that first monograph will be offered electronically as a supplement in this upcoming edition, we would like to put the overall emphasis for the second edition on molecular developments and on comparative issues. To this end we propose the underneath set up, where chapters will be brief and topical. Each chapter will present the historical setting of its subject, the comparison with other systems (if available) and the unique progress as made in Petunia. We expect that the second edition of the Petunia monograph will draw a broad readership both in academia and industry and hope that it will contribute to a further expansion in research on this wonderful Solanaceae.
Physiological, Molecular, and Genetic Perspectives of Wheat Improvement
Author: Shabir H Wani
Publisher: Springer Nature
ISBN: 3030595773
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
World population is growing at an alarming rate and may exceed 9.7 billion by 2050, whereas agricultural productivity has been negatively affected due to yield limiting factors such as biotic and abiotic stresses as a result of global climate change. Wheat is a staple crop for ~20% of the world population and its yield needs be augmented correspondingly in order to satisfy the demands of our increasing world population. “Green revolution”, the introduction of semi-dwarf, high yielding wheat varieties along with improved agronomic management practices, gave rise to a substantial increase in wheat production and self-sufficiency in developing countries that include Mexico, India and other south Asian countries. Since the late 1980’s, however, wheat yield is at a standoff with little fluctuation. The current trend is thus insufficient to meet the demands of an increasing world population. Therefore, while conventional breeding has had a great impact on wheat yield, with climate change becoming a reality, newer molecular breeding and management tools are needed to meet the goal of improving wheat yield for the future. With the advance in our understanding of the wheat genome and more importantly, the role of environmental interactions on productivity, the idea of genomic selection has been proposed to select for multi-genic quantitative traits early in the breeding cycle. Accordingly genomic selection may remodel wheat breeding with gain that is predicted to be 3 to 5 times that of crossbreeding. Phenomics (high-throughput phenotyping) is another fairly recent advancement using contemporary sensors for wheat germplasm screening and as a selection tool. Lastly, CRISPR/Cas9 ribonucleoprotein mediated genome editing technology has been successfully utilized for efficient and specific genome editing of hexaploid bread wheat. In summary, there has been exciting progresses in the development of non-GM wheat plants resistant to biotic and abiotic stress and/or wheat with improved nutritional quality. We believe it is important to highlight these novel research accomplishments for a broader audience, with the hope that our readers will ultimately adopt these powerful technologies for crops improvement in order to meet the demands of an expanding world population.
Publisher: Springer Nature
ISBN: 3030595773
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
World population is growing at an alarming rate and may exceed 9.7 billion by 2050, whereas agricultural productivity has been negatively affected due to yield limiting factors such as biotic and abiotic stresses as a result of global climate change. Wheat is a staple crop for ~20% of the world population and its yield needs be augmented correspondingly in order to satisfy the demands of our increasing world population. “Green revolution”, the introduction of semi-dwarf, high yielding wheat varieties along with improved agronomic management practices, gave rise to a substantial increase in wheat production and self-sufficiency in developing countries that include Mexico, India and other south Asian countries. Since the late 1980’s, however, wheat yield is at a standoff with little fluctuation. The current trend is thus insufficient to meet the demands of an increasing world population. Therefore, while conventional breeding has had a great impact on wheat yield, with climate change becoming a reality, newer molecular breeding and management tools are needed to meet the goal of improving wheat yield for the future. With the advance in our understanding of the wheat genome and more importantly, the role of environmental interactions on productivity, the idea of genomic selection has been proposed to select for multi-genic quantitative traits early in the breeding cycle. Accordingly genomic selection may remodel wheat breeding with gain that is predicted to be 3 to 5 times that of crossbreeding. Phenomics (high-throughput phenotyping) is another fairly recent advancement using contemporary sensors for wheat germplasm screening and as a selection tool. Lastly, CRISPR/Cas9 ribonucleoprotein mediated genome editing technology has been successfully utilized for efficient and specific genome editing of hexaploid bread wheat. In summary, there has been exciting progresses in the development of non-GM wheat plants resistant to biotic and abiotic stress and/or wheat with improved nutritional quality. We believe it is important to highlight these novel research accomplishments for a broader audience, with the hope that our readers will ultimately adopt these powerful technologies for crops improvement in order to meet the demands of an expanding world population.
Genetics and Molecular Biology of Muscle Adaptation
Author: Neil Spurway
Publisher: Elsevier Health Sciences
ISBN: 0443100772
Category : Medical
Languages : en
Pages : 285
Book Description
This title is directed primarily towards health care professionals outside of the United States. It starts with the origin of life and ends with the mechanisms that make muscles adapt to different forms of training. In between, it considers how evidence has been obtained about the extent of genetic influence on human capacities, how muscles and their fibres are studied for general properties and individual differences, and how molecular biological techniques have been combined with physiological ones to produce the new discipline of molecular exercise physiology. This is the first book on such topics written specifically for modules in exercise and sport science at final year Hons BSc and taught MSc levels.
Publisher: Elsevier Health Sciences
ISBN: 0443100772
Category : Medical
Languages : en
Pages : 285
Book Description
This title is directed primarily towards health care professionals outside of the United States. It starts with the origin of life and ends with the mechanisms that make muscles adapt to different forms of training. In between, it considers how evidence has been obtained about the extent of genetic influence on human capacities, how muscles and their fibres are studied for general properties and individual differences, and how molecular biological techniques have been combined with physiological ones to produce the new discipline of molecular exercise physiology. This is the first book on such topics written specifically for modules in exercise and sport science at final year Hons BSc and taught MSc levels.
E-Book Veterinary Genetics and Reproductive Physiology
Author: Susan Long
Publisher: Elsevier Health Sciences
ISBN: 070203505X
Category : Medical
Languages : en
Pages : 131
Book Description
Veterinary Genetics and Reproductive Physiology is the first textbook on this subject aimed specifically at veterinary nurses. Written by an experienced lecturer, this book expands on the basic facts to present a clear and comprehensive overview of genetics and reproductive physiology in veterinary nursing. It covers the needs of the curriculum, addressing a range of subjects from genetic material through to breeding and the physiological aspects of reproduction in different species. The author writes in a clear, user-friendly style making this book accessible to students with no prior knowledge of the subject. However, the level of depth and coverage makes it equally relevant and useful to the more advanced degree level student. - The first textbook to present reproduction and genetics at a level suitable for veterinary nurses and technicians - Links genetics with the practical aspects of reproduction to provide maximum understanding of theoretical concepts - Covers an important part of the curriculum - A combination of discursive text and bullet points ensures a user-friendly format and maximises learning potential - Coverage includes equine genetics and reproduction
Publisher: Elsevier Health Sciences
ISBN: 070203505X
Category : Medical
Languages : en
Pages : 131
Book Description
Veterinary Genetics and Reproductive Physiology is the first textbook on this subject aimed specifically at veterinary nurses. Written by an experienced lecturer, this book expands on the basic facts to present a clear and comprehensive overview of genetics and reproductive physiology in veterinary nursing. It covers the needs of the curriculum, addressing a range of subjects from genetic material through to breeding and the physiological aspects of reproduction in different species. The author writes in a clear, user-friendly style making this book accessible to students with no prior knowledge of the subject. However, the level of depth and coverage makes it equally relevant and useful to the more advanced degree level student. - The first textbook to present reproduction and genetics at a level suitable for veterinary nurses and technicians - Links genetics with the practical aspects of reproduction to provide maximum understanding of theoretical concepts - Covers an important part of the curriculum - A combination of discursive text and bullet points ensures a user-friendly format and maximises learning potential - Coverage includes equine genetics and reproduction
Mechanisms of Life History Evolution
Author: Thomas Flatt
Publisher: OUP Oxford
ISBN: 0191621021
Category : Science
Languages : en
Pages : 506
Book Description
Life history theory seeks to explain the evolution of the major features of life cycles by analyzing the ecological factors that shape age-specific schedules of growth, reproduction, and survival and by investigating the trade-offs that constrain the evolution of these traits. Although life history theory has made enormous progress in explaining the diversity of life history strategies among species, it traditionally ignores the underlying proximate mechanisms. This novel book argues that many fundamental problems in life history evolution, including the nature of trade-offs, can only be fully resolved if we begin to integrate information on developmental, physiological, and genetic mechanisms into the classical life history framework. Each chapter is written by an established or up-and-coming leader in their respective field; they not only represent the state of the art but also offer fresh perspectives for future research. The text is divided into 7 sections that cover basic concepts (Part 1), the mechanisms that affect different parts of the life cycle (growth, development, and maturation; reproduction; and aging and somatic maintenance) (Parts 2-4), life history plasticity (Part 5), life history integration and trade-offs (Part 6), and concludes with a synthesis chapter written by a prominent leader in the field and an editorial postscript (Part 7).
Publisher: OUP Oxford
ISBN: 0191621021
Category : Science
Languages : en
Pages : 506
Book Description
Life history theory seeks to explain the evolution of the major features of life cycles by analyzing the ecological factors that shape age-specific schedules of growth, reproduction, and survival and by investigating the trade-offs that constrain the evolution of these traits. Although life history theory has made enormous progress in explaining the diversity of life history strategies among species, it traditionally ignores the underlying proximate mechanisms. This novel book argues that many fundamental problems in life history evolution, including the nature of trade-offs, can only be fully resolved if we begin to integrate information on developmental, physiological, and genetic mechanisms into the classical life history framework. Each chapter is written by an established or up-and-coming leader in their respective field; they not only represent the state of the art but also offer fresh perspectives for future research. The text is divided into 7 sections that cover basic concepts (Part 1), the mechanisms that affect different parts of the life cycle (growth, development, and maturation; reproduction; and aging and somatic maintenance) (Parts 2-4), life history plasticity (Part 5), life history integration and trade-offs (Part 6), and concludes with a synthesis chapter written by a prominent leader in the field and an editorial postscript (Part 7).
An Introduction to Modern Genetics
Author: C H (Conrad Hal) 1905- Waddington
Publisher: Legare Street Press
ISBN: 9781022890541
Category :
Languages : en
Pages : 0
Book Description
C.H. Waddington, one of the most prominent geneticists of the twentieth century, provides a clear and concise overview of modern genetics in this landmark book. From DNA to epigenetics, Waddington covers the full breadth of the field, making this an essential read for students and professionals in genetics and related fields. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Legare Street Press
ISBN: 9781022890541
Category :
Languages : en
Pages : 0
Book Description
C.H. Waddington, one of the most prominent geneticists of the twentieth century, provides a clear and concise overview of modern genetics in this landmark book. From DNA to epigenetics, Waddington covers the full breadth of the field, making this an essential read for students and professionals in genetics and related fields. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Biofuel Crops
Author: Bharat P. Singh
Publisher: CABI
ISBN: 1845938852
Category : Science
Languages : en
Pages : 537
Book Description
Providing comprehensive coverage on biofuel crop production and the technological, environmental and resource issues associated with a sustainable biofuel industry, this book is ideal for researchers and industry personnel. Beginning with an introduction to biofuels and the challenges they face, the book then includes detailed coverage on crops of current importance or with high future prospects, including sections on algae, sugar crops and grass, oil and forestry species. The chapters focus on the genetics, breeding, cultivation, harvesting and handling of each crop.
Publisher: CABI
ISBN: 1845938852
Category : Science
Languages : en
Pages : 537
Book Description
Providing comprehensive coverage on biofuel crop production and the technological, environmental and resource issues associated with a sustainable biofuel industry, this book is ideal for researchers and industry personnel. Beginning with an introduction to biofuels and the challenges they face, the book then includes detailed coverage on crops of current importance or with high future prospects, including sections on algae, sugar crops and grass, oil and forestry species. The chapters focus on the genetics, breeding, cultivation, harvesting and handling of each crop.
Introduction to Animal Physiology and Physiological Genetics
Author: E. M. Pantelouris
Publisher: Elsevier
ISBN: 148314920X
Category : Science
Languages : en
Pages : 509
Book Description
Introduction to Animal Physiology and Physiological Genetics, deals with topics on physiological measurement, comparisons, and analysis of the role of genotypes. This book emphasizes two aspects — the changes of physiological patterns in the course of development and the wide variation that can be found within a species. The text discusses the response mechanisms of living organisms from nerve impulses, chemical sense, muscle reaction, and includes some studies made on brain function. The effects of nutrition and energy such as the intake of food, water, oxygen, and the calculation of basic metabolic rates are explained. The book then discusses the role of the internal environment and that of the interstitial body fluid in the higher animals. The discussion covers blood circulation, cardiac cycle, and a special section on the function of the heartbeat in the spider Limulus showing that stimulation of the abdominal ganglia increases the heartbeats. The text also considers significant concepts of physiological genetics, and then explains asexual and sexual reproduction, the sex hormones of invertebrates, and the use of stimulants for animal production. The physiological differences between species are examined, but more particularly on the reservoir of genetic diversity, where differences abound between families and offspring. One research made in molecular biology concludes that genes are responsible for regulating the amino acid sequence of proteins. Molecular biologists, general biologists, zoologists, and microbiologists will find the articles in this collection invaluable.
Publisher: Elsevier
ISBN: 148314920X
Category : Science
Languages : en
Pages : 509
Book Description
Introduction to Animal Physiology and Physiological Genetics, deals with topics on physiological measurement, comparisons, and analysis of the role of genotypes. This book emphasizes two aspects — the changes of physiological patterns in the course of development and the wide variation that can be found within a species. The text discusses the response mechanisms of living organisms from nerve impulses, chemical sense, muscle reaction, and includes some studies made on brain function. The effects of nutrition and energy such as the intake of food, water, oxygen, and the calculation of basic metabolic rates are explained. The book then discusses the role of the internal environment and that of the interstitial body fluid in the higher animals. The discussion covers blood circulation, cardiac cycle, and a special section on the function of the heartbeat in the spider Limulus showing that stimulation of the abdominal ganglia increases the heartbeats. The text also considers significant concepts of physiological genetics, and then explains asexual and sexual reproduction, the sex hormones of invertebrates, and the use of stimulants for animal production. The physiological differences between species are examined, but more particularly on the reservoir of genetic diversity, where differences abound between families and offspring. One research made in molecular biology concludes that genes are responsible for regulating the amino acid sequence of proteins. Molecular biologists, general biologists, zoologists, and microbiologists will find the articles in this collection invaluable.