Author: John Spicer
Publisher: John Wiley & Sons
ISBN: 1444311425
Category : Science
Languages : en
Pages : 256
Book Description
Ecologists have always believed, at least to a certain extent, that physiological mechanisms serve to underpin ecological patterns. However, their importance has traditionally been at best underestimated and at worst ignored, with physiological variation being dismissed as either an irrelevance or as random noise/error. Spicer and Gaston make a convincing argument that the precise physiology does matter! In contrast to previous works which have attempted to integrate ecology and physiology, Physiological Diversity adopts a completely different and more controversial approach in tackling the physiology first before moving on to consider the implications for ecology. This is timely given the recent and considerable interest in the mechanisms underlying ecological patterns. Indeed, many of these mechanisms are physiological. This textbook provides a contemporary summary of physiological diversity as it occurs at different hierarchical levels (individual, population, species etc.), and the implications of such diversity for ecology and, by implication, evolution. It reviews what is known of physiological diversity and in doing so exposes the reader to all the key works in the field. It also portrays many of these studies in a completely new light, thereby serving as an agenda for, and impetus to, the future study of physiological variation. Physiological Diversity will be of relevance to senior undergraduates, postgraduates and professional researchers in the fields of ecology, ecological physiology, ecotoxicology, environmental biology and conservation. The book spans both terrestrial and marine systems.
Physiological Diversity
Author: John Spicer
Publisher: John Wiley & Sons
ISBN: 1444311425
Category : Science
Languages : en
Pages : 256
Book Description
Ecologists have always believed, at least to a certain extent, that physiological mechanisms serve to underpin ecological patterns. However, their importance has traditionally been at best underestimated and at worst ignored, with physiological variation being dismissed as either an irrelevance or as random noise/error. Spicer and Gaston make a convincing argument that the precise physiology does matter! In contrast to previous works which have attempted to integrate ecology and physiology, Physiological Diversity adopts a completely different and more controversial approach in tackling the physiology first before moving on to consider the implications for ecology. This is timely given the recent and considerable interest in the mechanisms underlying ecological patterns. Indeed, many of these mechanisms are physiological. This textbook provides a contemporary summary of physiological diversity as it occurs at different hierarchical levels (individual, population, species etc.), and the implications of such diversity for ecology and, by implication, evolution. It reviews what is known of physiological diversity and in doing so exposes the reader to all the key works in the field. It also portrays many of these studies in a completely new light, thereby serving as an agenda for, and impetus to, the future study of physiological variation. Physiological Diversity will be of relevance to senior undergraduates, postgraduates and professional researchers in the fields of ecology, ecological physiology, ecotoxicology, environmental biology and conservation. The book spans both terrestrial and marine systems.
Publisher: John Wiley & Sons
ISBN: 1444311425
Category : Science
Languages : en
Pages : 256
Book Description
Ecologists have always believed, at least to a certain extent, that physiological mechanisms serve to underpin ecological patterns. However, their importance has traditionally been at best underestimated and at worst ignored, with physiological variation being dismissed as either an irrelevance or as random noise/error. Spicer and Gaston make a convincing argument that the precise physiology does matter! In contrast to previous works which have attempted to integrate ecology and physiology, Physiological Diversity adopts a completely different and more controversial approach in tackling the physiology first before moving on to consider the implications for ecology. This is timely given the recent and considerable interest in the mechanisms underlying ecological patterns. Indeed, many of these mechanisms are physiological. This textbook provides a contemporary summary of physiological diversity as it occurs at different hierarchical levels (individual, population, species etc.), and the implications of such diversity for ecology and, by implication, evolution. It reviews what is known of physiological diversity and in doing so exposes the reader to all the key works in the field. It also portrays many of these studies in a completely new light, thereby serving as an agenda for, and impetus to, the future study of physiological variation. Physiological Diversity will be of relevance to senior undergraduates, postgraduates and professional researchers in the fields of ecology, ecological physiology, ecotoxicology, environmental biology and conservation. The book spans both terrestrial and marine systems.
Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.
Author: Eustaquio Gil-PelegrÃn
Publisher: Springer
ISBN: 331969099X
Category : Science
Languages : en
Pages : 544
Book Description
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.
Publisher: Springer
ISBN: 331969099X
Category : Science
Languages : en
Pages : 544
Book Description
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.
Physiological Ecology
Author: William H. Karasov
Publisher: Princeton University Press
ISBN: 0691074534
Category : Science
Languages : en
Pages : 758
Book Description
Unlocking the puzzle of how animals behave and how they interact with their environments is impossible without understanding the physiological processes that determine their use of food resources. But long overdue is a user-friendly introduction to the subject that systematically bridges the gap between physiology and ecology. Ecologists--for whom such knowledge can help clarify the consequences of global climate change, the biodiversity crisis, and pollution--often find themselves wading through an unwieldy, technically top-heavy literature. Here, William Karasov and Carlos MartÃnez del Rio present the first accessible and authoritative one-volume overview of the physiological and biochemical principles that shape how animals procure energy and nutrients and free themselves of toxins--and how this relates to broader ecological phenomena. After introducing primary concepts, the authors review the chemical ecology of food, and then discuss how animals digest and process food. Their broad view includes symbioses and extends even to ecosystem phenomena such as ecological stochiometry and toxicant biomagnification. They introduce key methods and illustrate principles with wide-ranging vertebrate and invertebrate examples. Uniquely, they also link the physiological mechanisms of resource use with ecological phenomena such as how and why animals choose what they eat and how they participate in the exchange of energy and materials in their biological communities. Thoroughly up-to-date and pointing the way to future research, Physiological Ecology is an essential new source for upper-level undergraduate and graduate students-and an ideal synthesis for professionals. The most accessible introduction to the physiological and biochemical principles that shape how animals use resources Unique in linking the physiological mechanisms of resource use with ecological phenomena An essential resource for upper-level undergraduate and graduate students An ideal overview for researchers
Publisher: Princeton University Press
ISBN: 0691074534
Category : Science
Languages : en
Pages : 758
Book Description
Unlocking the puzzle of how animals behave and how they interact with their environments is impossible without understanding the physiological processes that determine their use of food resources. But long overdue is a user-friendly introduction to the subject that systematically bridges the gap between physiology and ecology. Ecologists--for whom such knowledge can help clarify the consequences of global climate change, the biodiversity crisis, and pollution--often find themselves wading through an unwieldy, technically top-heavy literature. Here, William Karasov and Carlos MartÃnez del Rio present the first accessible and authoritative one-volume overview of the physiological and biochemical principles that shape how animals procure energy and nutrients and free themselves of toxins--and how this relates to broader ecological phenomena. After introducing primary concepts, the authors review the chemical ecology of food, and then discuss how animals digest and process food. Their broad view includes symbioses and extends even to ecosystem phenomena such as ecological stochiometry and toxicant biomagnification. They introduce key methods and illustrate principles with wide-ranging vertebrate and invertebrate examples. Uniquely, they also link the physiological mechanisms of resource use with ecological phenomena such as how and why animals choose what they eat and how they participate in the exchange of energy and materials in their biological communities. Thoroughly up-to-date and pointing the way to future research, Physiological Ecology is an essential new source for upper-level undergraduate and graduate students-and an ideal synthesis for professionals. The most accessible introduction to the physiological and biochemical principles that shape how animals use resources Unique in linking the physiological mechanisms of resource use with ecological phenomena An essential resource for upper-level undergraduate and graduate students An ideal overview for researchers
New Directions in Ecological Physiology
Author: Martin E. Feder
Publisher: Cambridge University Press
ISBN: 9780521349383
Category : Science
Languages : en
Pages : 380
Book Description
This 1988 book outlines conceptual approaches to the study of physiological adaptation in animals.
Publisher: Cambridge University Press
ISBN: 9780521349383
Category : Science
Languages : en
Pages : 380
Book Description
This 1988 book outlines conceptual approaches to the study of physiological adaptation in animals.
Biological Diversity: Current Status and Conservation Policies
Author: Vinod Kumar
Publisher: Agro Environ Media, Publication Cell of AESA, Agriculture and Environmental Science Academy,
ISBN: 8195499643
Category : Science
Languages : en
Pages : 400
Book Description
The present book has been designed to bind prime knowledge of climate change-induced impacts on various aspects of our environment and its biological diversity. The book also contains updated information, methods and tools for the monitoring and conservation of impacted biological diversity.
Publisher: Agro Environ Media, Publication Cell of AESA, Agriculture and Environmental Science Academy,
ISBN: 8195499643
Category : Science
Languages : en
Pages : 400
Book Description
The present book has been designed to bind prime knowledge of climate change-induced impacts on various aspects of our environment and its biological diversity. The book also contains updated information, methods and tools for the monitoring and conservation of impacted biological diversity.
Diversity and Eco-Physiological Responses of Aquatic Plants
Author: Chunhua Liu
Publisher: Frontiers Media SA
ISBN: 2889637972
Category :
Languages : en
Pages : 239
Book Description
Aquatic plants refer to a diverse group of aquatic photosynthetic organisms large enough to be seem with the naked eye, and the vegetative parts of which actively grow either permanently or periodically (for at least several weeks each year) submerged below, floating on, or growing up through the water surface. These include aquatic vascular plants, aquatic mosses and some larger algae. Aquatic plants are grouped into life forms, each of which relates differently to limiting factors and has distinct ecological functions in aquatic ecosystems. Life form groups include emergent macrophytes (plants that are rooted in sediment or soils that are periodically inundated, with all other structures extending into the air), floating-leaved macrophytes (rooted plants with leaves that float on the water surface), submersed macrophytes (rooted plants growing completely submerged), free submerged macrophytes (which are not rooted but attached to other macrophytes or submerged structures) and free-floating macrophytes (plants that float on the water surface). Aquatic plants play an important role in the structure and function of aquatic ecosystems by altering water movement regimes, providing shelter and refuge and serving as a food source. In addition, aquatic plants produce large standing crops which can also stabilize sediments, accumulate large amounts of nutrients thus improving water healthy. Thus, because of their ecological role, aquatic plants are an important component of aquatic ecosystems. Aquatic plants are very vulnerable to human activities and global changes, and many species of the plants had become endangered in the past several decades due to habitat loss, flooding, damming, over foraging, biological invasion and eutrophication, which might not be halted but enforced in the future when more extreme weathers coincide with enhanced human activities.
Publisher: Frontiers Media SA
ISBN: 2889637972
Category :
Languages : en
Pages : 239
Book Description
Aquatic plants refer to a diverse group of aquatic photosynthetic organisms large enough to be seem with the naked eye, and the vegetative parts of which actively grow either permanently or periodically (for at least several weeks each year) submerged below, floating on, or growing up through the water surface. These include aquatic vascular plants, aquatic mosses and some larger algae. Aquatic plants are grouped into life forms, each of which relates differently to limiting factors and has distinct ecological functions in aquatic ecosystems. Life form groups include emergent macrophytes (plants that are rooted in sediment or soils that are periodically inundated, with all other structures extending into the air), floating-leaved macrophytes (rooted plants with leaves that float on the water surface), submersed macrophytes (rooted plants growing completely submerged), free submerged macrophytes (which are not rooted but attached to other macrophytes or submerged structures) and free-floating macrophytes (plants that float on the water surface). Aquatic plants play an important role in the structure and function of aquatic ecosystems by altering water movement regimes, providing shelter and refuge and serving as a food source. In addition, aquatic plants produce large standing crops which can also stabilize sediments, accumulate large amounts of nutrients thus improving water healthy. Thus, because of their ecological role, aquatic plants are an important component of aquatic ecosystems. Aquatic plants are very vulnerable to human activities and global changes, and many species of the plants had become endangered in the past several decades due to habitat loss, flooding, damming, over foraging, biological invasion and eutrophication, which might not be halted but enforced in the future when more extreme weathers coincide with enhanced human activities.
Physiological Chemistry
Author: Albert P. Mathews
Publisher:
ISBN:
Category : Biochemistry
Languages : en
Pages : 1258
Book Description
Biochemie.
Publisher:
ISBN:
Category : Biochemistry
Languages : en
Pages : 1258
Book Description
Biochemie.
Conservation Physiology for the Anthropocene - A Systems Approach
Author:
Publisher: Academic Press
ISBN: 0128242671
Category : Science
Languages : en
Pages : 512
Book Description
Conservation Physiology for the Anthropocene: A Systems Approach, Volume 39A in the Fish Physiology series, is a comprehensive synthesis on the physiology of fish in the Anthropocene. This volume closes the knowledge gap by considering the many ways in which different physiological systems (e.g., sensory physiology, endocrine, cardio-respiratory, bioenergetics, water and ionic balance and homeostasis, locomotion/biomechanics, gene function) and physiological diversity are relevant to management and conservation. As the world is changing, with a dire need to identify solutions to the many environmental problems facing wild fish populations, this book comprehensively covers conservation physiology and its future techniques. Conservation physiology reveals the many ways in which environmental change and human activities can negatively influence wild fish populations. These tactics inform new management and conservation activities and help create the necessary conditions for fish to thrive. - Presents authoritative contributions from an international board of authors, each with extensive expertise in the conservation physiology of fish - Provides the most up-to-date information on the ways in which different physiological systems are relevant to the management and conservation of fish and fisheries - Identifies how anthropogenic stressors perturb physiological systems - Explores how different physiological systems can be exploited to solve conservation problems
Publisher: Academic Press
ISBN: 0128242671
Category : Science
Languages : en
Pages : 512
Book Description
Conservation Physiology for the Anthropocene: A Systems Approach, Volume 39A in the Fish Physiology series, is a comprehensive synthesis on the physiology of fish in the Anthropocene. This volume closes the knowledge gap by considering the many ways in which different physiological systems (e.g., sensory physiology, endocrine, cardio-respiratory, bioenergetics, water and ionic balance and homeostasis, locomotion/biomechanics, gene function) and physiological diversity are relevant to management and conservation. As the world is changing, with a dire need to identify solutions to the many environmental problems facing wild fish populations, this book comprehensively covers conservation physiology and its future techniques. Conservation physiology reveals the many ways in which environmental change and human activities can negatively influence wild fish populations. These tactics inform new management and conservation activities and help create the necessary conditions for fish to thrive. - Presents authoritative contributions from an international board of authors, each with extensive expertise in the conservation physiology of fish - Provides the most up-to-date information on the ways in which different physiological systems are relevant to the management and conservation of fish and fisheries - Identifies how anthropogenic stressors perturb physiological systems - Explores how different physiological systems can be exploited to solve conservation problems
Biology of the Nitrogen Cycle
Author: Hermann Bothe
Publisher: Elsevier
ISBN: 0444531084
Category :
Languages : en
Pages : 451
Book Description
Publisher: Elsevier
ISBN: 0444531084
Category :
Languages : en
Pages : 451
Book Description
Conservation Physiology
Author: Christine L. Madliger
Publisher: Oxford University Press
ISBN: 0192581775
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
Conservation physiology is a rapidly expanding, multidisciplinary field that utilizes physiological knowledge and tools to understand and solve conservation challenges. This novel text provides the first consolidated overview of its scope, purpose, and applications, with a focus on wildlife. It outlines the major avenues and advances by which conservation physiology is contributing to the monitoring, management, and restoration of wild animal populations. This book also defines opportunities for further growth in the field and identifies critical areas for future investigation. By using a series of global case studies, contributors illustrate how approaches from the conservation physiology toolbox can tackle a diverse range of conservation issues including the monitoring of environmental stress, predicting the impact of climate change, understanding disease dynamics, improving captive breeding, and reducing human-wildlife conflict. Moreover, by acting as practical road maps across a diversity of sub-disciplines, these case studies serve to increase the accessibility of this discipline to new researchers. The diversity of taxa, biological scales, and ecosystems highlighted illustrate the far-reaching nature of the discipline and allow readers to gain an appreciation for the purpose, value, applicability, and status of the field of conservation physiology. Conservation Physiology is an accessible supplementary textbook suitable for graduate students, researchers, and practitioners in the fields of conservation science, eco-physiology, evolutionary and comparative physiology, natural resources management, ecosystem health, veterinary medicine, animal physiology, and ecology.
Publisher: Oxford University Press
ISBN: 0192581775
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
Conservation physiology is a rapidly expanding, multidisciplinary field that utilizes physiological knowledge and tools to understand and solve conservation challenges. This novel text provides the first consolidated overview of its scope, purpose, and applications, with a focus on wildlife. It outlines the major avenues and advances by which conservation physiology is contributing to the monitoring, management, and restoration of wild animal populations. This book also defines opportunities for further growth in the field and identifies critical areas for future investigation. By using a series of global case studies, contributors illustrate how approaches from the conservation physiology toolbox can tackle a diverse range of conservation issues including the monitoring of environmental stress, predicting the impact of climate change, understanding disease dynamics, improving captive breeding, and reducing human-wildlife conflict. Moreover, by acting as practical road maps across a diversity of sub-disciplines, these case studies serve to increase the accessibility of this discipline to new researchers. The diversity of taxa, biological scales, and ecosystems highlighted illustrate the far-reaching nature of the discipline and allow readers to gain an appreciation for the purpose, value, applicability, and status of the field of conservation physiology. Conservation Physiology is an accessible supplementary textbook suitable for graduate students, researchers, and practitioners in the fields of conservation science, eco-physiology, evolutionary and comparative physiology, natural resources management, ecosystem health, veterinary medicine, animal physiology, and ecology.