Physics with Excel and Python

Physics with Excel and Python PDF Author: Dieter Mergel
Publisher: Springer Nature
ISBN: 3030823253
Category : Science
Languages : en
Pages : 493

Get Book Here

Book Description
This book is intended to serve as a basic introduction to scientific computing by treating problems from various areas of physics - mechanics, optics, acoustics, and statistical reasoning in the context of the evaluation of measurements. After working through these examples, students are able to independently work on physical problems that they encounter during their studies. For every exercise, the author introduces the physical problem together with a data structure that serves as an interface to programming in Excel and Python. When a solution is achieved in one application, it can easily be translated into the other one and presumably any other platform for scientific computing. This is possible because the basic techniques of vector and matrix calculation and array broadcasting are also achieved with spreadsheet techniques, and logical queries and for-loops operate on spreadsheets from simple Visual Basic macros. So, starting to learn scientific calculation with Excel, e.g., at High School, is a targeted road to scientific computing. The primary target groups of this book are students with a major or minor subject in physics, who have interest in computational techniques and at the same time want to deepen their knowledge of physics. Math, physics and computer science teachers and Teacher Education students will also find a companion in this book to help them integrate computer techniques into their lessons. Even professional physicists who want to venture into Scientific Computing may appreciate this book.

Physics with Excel and Python

Physics with Excel and Python PDF Author: Dieter Mergel
Publisher: Springer Nature
ISBN: 3030823253
Category : Science
Languages : en
Pages : 493

Get Book Here

Book Description
This book is intended to serve as a basic introduction to scientific computing by treating problems from various areas of physics - mechanics, optics, acoustics, and statistical reasoning in the context of the evaluation of measurements. After working through these examples, students are able to independently work on physical problems that they encounter during their studies. For every exercise, the author introduces the physical problem together with a data structure that serves as an interface to programming in Excel and Python. When a solution is achieved in one application, it can easily be translated into the other one and presumably any other platform for scientific computing. This is possible because the basic techniques of vector and matrix calculation and array broadcasting are also achieved with spreadsheet techniques, and logical queries and for-loops operate on spreadsheets from simple Visual Basic macros. So, starting to learn scientific calculation with Excel, e.g., at High School, is a targeted road to scientific computing. The primary target groups of this book are students with a major or minor subject in physics, who have interest in computational techniques and at the same time want to deepen their knowledge of physics. Math, physics and computer science teachers and Teacher Education students will also find a companion in this book to help them integrate computer techniques into their lessons. Even professional physicists who want to venture into Scientific Computing may appreciate this book.

Effective Computation in Physics

Effective Computation in Physics PDF Author: Anthony Scopatz
Publisher: "O'Reilly Media, Inc."
ISBN: 1491901586
Category : Science
Languages : en
Pages : 567

Get Book Here

Book Description
More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures

Python for Scientists

Python for Scientists PDF Author: John M. Stewart
Publisher: Cambridge University Press
ISBN: 1316641236
Category : Computers
Languages : en
Pages : 272

Get Book Here

Book Description
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.

Python for Mechanical and Aerospace Engineering

Python for Mechanical and Aerospace Engineering PDF Author: Alex Kenan
Publisher: Alex Kenan
ISBN: 1736060600
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
The traditional computer science courses for engineering focus on the fundamentals of programming without demonstrating the wide array of practical applications for fields outside of computer science. Thus, the mindset of “Java/Python is for computer science people or programmers, and MATLAB is for engineering” develops. MATLAB tends to dominate the engineering space because it is viewed as a batteries-included software kit that is focused on functional programming. Everything in MATLAB is some sort of array, and it lends itself to engineering integration with its toolkits like Simulink and other add-ins. The downside of MATLAB is that it is proprietary software, the license is expensive to purchase, and it is more limited than Python for doing tasks besides calculating or data capturing. This book is about the Python programming language. Specifically, it is about Python in the context of mechanical and aerospace engineering. Did you know that Python can be used to model a satellite orbiting the Earth? You can find the completed programs and a very helpful 595 page NSA Python tutorial at the book’s GitHub page at https://www.github.com/alexkenan/pymae. Read more about the book, including a sample part of Chapter 5, at https://pymae.github.io

Computational Physics

Computational Physics PDF Author: Mark E. J. Newman
Publisher: Createspace Independent Publishing Platform
ISBN: 9781480145511
Category : Computational physics
Languages : en
Pages : 0

Get Book Here

Book Description
This book explains the fundamentals of computational physics and describes the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher. The book begins with an introduction to Python, then moves on to a step-by-step description of the techniques of computational physics, with examples ranging from simple mechanics problems to complex calculations in quantum mechanics, electromagnetism, statistical mechanics, and more.

Introduction to Python for Science and Engineering

Introduction to Python for Science and Engineering PDF Author: David J. Pine
Publisher: CRC Press
ISBN: 1040119573
Category : Computers
Languages : en
Pages : 444

Get Book Here

Book Description
Introduction to Python for Science and Engineering offers a quick and incisive introduction to the Python programming language for use in any science or engineering discipline. The approach is pedagogical and “bottom up,” which means starting with examples and extracting more general principles from that experience. No prior programming experience is assumed. Readers will learn the basics of Python syntax, data structures, input and output, conditionals and loops, user-defined functions, plotting, animation, and visualization. They will also learn how to use Python for numerical analysis, including curve fitting, random numbers, linear algebra, solutions to nonlinear equations, numerical integration, solutions to differential equations, and fast Fourier transforms. Readers learn how to interact and program with Python using JupyterLab and Spyder, two simple and widely used integrated development environments. All the major Python libraries for science and engineering are covered, including NumPy, SciPy, Matplotlib, and Pandas. Other packages are also introduced, including Numba, which can render Python numerical calculations as fast as compiled computer languages such as C but without their complex overhead.

Robust Python

Robust Python PDF Author: Patrick Viafore
Publisher: "O'Reilly Media, Inc."
ISBN: 1098100611
Category : Computers
Languages : en
Pages : 365

Get Book Here

Book Description
Does it seem like your Python projects are getting bigger and bigger? Are you feeling the pain as your codebase expands and gets tougher to debug and maintain? Python is an easy language to learn and use, but that also means systems can quickly grow beyond comprehension. Thankfully, Python has features to help developers overcome maintainability woes. In this practical book, author Patrick Viafore shows you how to use Python's type system to the max. You'll look at user-defined types, such as classes and enums, and Python's type hinting system. You'll also learn how to make Python extensible and how to use a comprehensive testing strategy as a safety net. With these tips and techniques, you'll write clearer and more maintainable code. Learn why types are essential in modern development ecosystems Understand how type choices such as classes, dictionaries, and enums reflect specific intents Make Python extensible for the future without adding bloat Use popular Python tools to increase the safety and robustness of your codebase Evaluate current code to detect common maintainability gotchas Build a safety net around your codebase with linters and tests

Financial Modelling in Python

Financial Modelling in Python PDF Author: Shayne Fletcher
Publisher: John Wiley & Sons
ISBN: 0470747897
Category : Business & Economics
Languages : en
Pages : 244

Get Book Here

Book Description
"Fletcher and Gardner have created a comprehensive resource that will be of interest not only to those working in the field of finance, but also to those using numerical methods in other fields such as engineering, physics, and actuarial mathematics. By showing how to combine the high-level elegance, accessibility, and flexibility of Python, with the low-level computational efficiency of C++, in the context of interesting financial modeling problems, they have provided an implementation template which will be useful to others seeking to jointly optimize the use of computational and human resources. They document all the necessary technical details required in order to make external numerical libraries available from within Python, and they contribute a useful library of their own, which will significantly reduce the start-up costs involved in building financial models. This book is a must read for all those with a need to apply numerical methods in the valuation of financial claims." –David Louton, Professor of Finance, Bryant University This book is directed at both industry practitioners and students interested in designing a pricing and risk management framework for financial derivatives using the Python programming language. It is a practical book complete with working, tested code that guides the reader through the process of building a flexible, extensible pricing framework in Python. The pricing frameworks' loosely coupled fundamental components have been designed to facilitate the quick development of new models. Concrete applications to real-world pricing problems are also provided. Topics are introduced gradually, each building on the last. They include basic mathematical algorithms, common algorithms from numerical analysis, trade, market and event data model representations, lattice and simulation based pricing, and model development. The mathematics presented is kept simple and to the point. The book also provides a host of information on practical technical topics such as C++/Python hybrid development (embedding and extending) and techniques for integrating Python based programs with Microsoft Excel.

Python for Data Analysis

Python for Data Analysis PDF Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553

Get Book Here

Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Essentials of Excel VBA, Python, and R

Essentials of Excel VBA, Python, and R PDF Author: John Lee
Publisher: Springer Nature
ISBN: 3031142365
Category : Business & Economics
Languages : en
Pages : 698

Get Book Here

Book Description
This advanced textbook for business statistics teaches, statistical analyses and research methods utilizing business case studies and financial data, with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry. This first volume is designed for advanced courses in financial statistics, investment analysis and portfolio management. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the second volume for dedicated content on financial derivatives, risk management, and machine learning.