Author: Yvonne Choquet-Bruhat
Publisher: Gulf Professional Publishing
ISBN: 9780444860170
Category : Mathematics
Languages : en
Pages : 666
Book Description
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
Analysis, Manifolds and Physics Revised Edition
Author: Yvonne Choquet-Bruhat
Publisher: Gulf Professional Publishing
ISBN: 9780444860170
Category : Mathematics
Languages : en
Pages : 666
Book Description
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
Publisher: Gulf Professional Publishing
ISBN: 9780444860170
Category : Mathematics
Languages : en
Pages : 666
Book Description
This reference book, which has found wide use as a text, provides an answer to the needs of graduate physical mathematics students and their teachers. The present edition is a thorough revision of the first, including a new chapter entitled ``Connections on Principle Fibre Bundles'' which includes sections on holonomy, characteristic classes, invariant curvature integrals and problems on the geometry of gauge fields, monopoles, instantons, spin structure and spin connections. Many paragraphs have been rewritten, and examples and exercises added to ease the study of several chapters. The index includes over 130 entries.
Tensors and Manifolds
Author: Robert Wasserman
Publisher: Oxford University Press, USA
ISBN: 9780198510598
Category : Language Arts & Disciplines
Languages : en
Pages : 468
Book Description
This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.
Publisher: Oxford University Press, USA
ISBN: 9780198510598
Category : Language Arts & Disciplines
Languages : en
Pages : 468
Book Description
This book sets forth the basic principles of tensors and manifolds and describes how the mathematics underlies elegant geometrical models of classical mechanics, relativity and elementary particle physics.
Differential Manifolds and Theoretical Physics
Author:
Publisher: Academic Press
ISBN: 0080874355
Category : Mathematics
Languages : en
Pages : 417
Book Description
Differential Manifolds and Theoretical Physics
Publisher: Academic Press
ISBN: 0080874355
Category : Mathematics
Languages : en
Pages : 417
Book Description
Differential Manifolds and Theoretical Physics
Differential Geometry and Mathematical Physics
Author: Gerd Rudolph
Publisher: Springer Science & Business Media
ISBN: 9400753454
Category : Science
Languages : en
Pages : 766
Book Description
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
Publisher: Springer Science & Business Media
ISBN: 9400753454
Category : Science
Languages : en
Pages : 766
Book Description
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
Differentiable Manifolds
Author: Gerardo F. Torres del Castillo
Publisher: Springer Nature
ISBN: 3030451933
Category : Mathematics
Languages : en
Pages : 447
Book Description
This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.
Publisher: Springer Nature
ISBN: 3030451933
Category : Mathematics
Languages : en
Pages : 447
Book Description
This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.
Differential Equations on Manifolds and Mathematical Physics
Author: Vladimir M. Manuilov
Publisher: Birkhäuser
ISBN: 9783030373252
Category : Mathematics
Languages : en
Pages : 338
Book Description
This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
Publisher: Birkhäuser
ISBN: 9783030373252
Category : Mathematics
Languages : en
Pages : 338
Book Description
This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.
Manifolds, Tensors and Forms
Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343
Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Geometric Mechanics on Riemannian Manifolds
Author: Ovidiu Calin
Publisher: Springer Science & Business Media
ISBN: 0817644210
Category : Mathematics
Languages : en
Pages : 285
Book Description
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
Publisher: Springer Science & Business Media
ISBN: 0817644210
Category : Mathematics
Languages : en
Pages : 285
Book Description
* A geometric approach to problems in physics, many of which cannot be solved by any other methods * Text is enriched with good examples and exercises at the end of every chapter * Fine for a course or seminar directed at grad and adv. undergrad students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics
Calculus on Manifolds
Author: Michael Spivak
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Relativity on Curved Manifolds
Author: F. de Felice
Publisher: Cambridge University Press
ISBN: 9780521429085
Category : Mathematics
Languages : en
Pages : 466
Book Description
This is a self-contained exposition of general relativity with emphasis given to tetrad and spinor structures and physical measurement on curved manifolds.
Publisher: Cambridge University Press
ISBN: 9780521429085
Category : Mathematics
Languages : en
Pages : 466
Book Description
This is a self-contained exposition of general relativity with emphasis given to tetrad and spinor structures and physical measurement on curved manifolds.