Physics of Nonlinear Transport in Semiconductors

Physics of Nonlinear Transport in Semiconductors PDF Author: David K. Ferry
Publisher: Springer Science & Business Media
ISBN: 1468436384
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
The area of high field transport in semiconductors has been of interest since the early studies of dielectric breakdown in various materials. It really emerged as a sub-discipline of semiconductor physics in the early 1960's, following the discovery of substantial deviations from Ohm's law at high electric fields. Since that time, it has become a major area of importance in solid state electronics as semiconductor devices have operated at higher frequencies and higher powers. It has become apparent since the Modena Conference on Hot Electrons in 1973, that the area of hot electrons has ex tended weIl beyond the concept of semi-classical electrons (or holes) in homogeneous semiconductor materials. This was exemplified by the broad range of papers presented at the International Conference on Hot Electrons in Semiconductors, held in Denton, Texas, in 1977. Hot electron physics has progressed from a limited phenomeno logical science to a full-fledged experimental and precision theo retical science. The conceptual base and subsequent applications have been widened and underpinned by the development of ab initio nonlinear quantum transport theory which complements and identifies the limitations of the traditional semi-classical Boltzmann-Bloch picture. Such diverse areas as large polarons, pico-second laser excitation, quantum magneto-transport, sub-three dimensional systems, and of course device dynamics all have been shown to be strongly interactive with more classical hot electron pictures.

Physics of Nonlinear Transport in Semiconductors

Physics of Nonlinear Transport in Semiconductors PDF Author: David K. Ferry
Publisher: Springer Science & Business Media
ISBN: 1468436384
Category : Technology & Engineering
Languages : en
Pages : 620

Get Book Here

Book Description
The area of high field transport in semiconductors has been of interest since the early studies of dielectric breakdown in various materials. It really emerged as a sub-discipline of semiconductor physics in the early 1960's, following the discovery of substantial deviations from Ohm's law at high electric fields. Since that time, it has become a major area of importance in solid state electronics as semiconductor devices have operated at higher frequencies and higher powers. It has become apparent since the Modena Conference on Hot Electrons in 1973, that the area of hot electrons has ex tended weIl beyond the concept of semi-classical electrons (or holes) in homogeneous semiconductor materials. This was exemplified by the broad range of papers presented at the International Conference on Hot Electrons in Semiconductors, held in Denton, Texas, in 1977. Hot electron physics has progressed from a limited phenomeno logical science to a full-fledged experimental and precision theo retical science. The conceptual base and subsequent applications have been widened and underpinned by the development of ab initio nonlinear quantum transport theory which complements and identifies the limitations of the traditional semi-classical Boltzmann-Bloch picture. Such diverse areas as large polarons, pico-second laser excitation, quantum magneto-transport, sub-three dimensional systems, and of course device dynamics all have been shown to be strongly interactive with more classical hot electron pictures.

Theory of Electron Transport in Semiconductors

Theory of Electron Transport in Semiconductors PDF Author: Carlo Jacoboni
Publisher: Springer Science & Business Media
ISBN: 3642105866
Category : Science
Languages : en
Pages : 590

Get Book Here

Book Description
This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.

Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors PDF Author: Eckehard Schöll
Publisher: Cambridge University Press
ISBN: 0521451868
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
This book brings together concepts from semiconductor physics, nonlinear-dynamics and chaos to examine semiconductor transport phenomena.

Physics of Hot Electron Transport in Semiconductors

Physics of Hot Electron Transport in Semiconductors PDF Author: Chin Sen Ting
Publisher: World Scientific
ISBN: 9789810210083
Category : Science
Languages : en
Pages : 336

Get Book Here

Book Description
This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.

Theory of Transport Properties of Semiconductor Nanostructures

Theory of Transport Properties of Semiconductor Nanostructures PDF Author: Eckehard Schöll
Publisher: Springer Science & Business Media
ISBN: 1461558077
Category : Technology & Engineering
Languages : en
Pages : 394

Get Book Here

Book Description
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.

Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems PDF Author: Supriyo Datta
Publisher: Cambridge University Press
ISBN: 1139643010
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.

Hot Carriers in Semiconductors

Hot Carriers in Semiconductors PDF Author: J. Shah
Publisher: Elsevier
ISBN: 148328686X
Category : Technology & Engineering
Languages : en
Pages : 532

Get Book Here

Book Description
A comprehensive account of the latest developments in the rapidly expanding area of Semiconductor Technology. Main topics covered include real space transfer/heterostructures, ultrafast studies, optical studies, transport theory, devices, ballistic transport, scattering processes and hot phonons, tunnelling, far infrared and magnetic field studies and impact ionization/noise/chaos. Other aspects include the use of femtosecond lasers in investigating transient hot carrier effects on femtosecond timescales, magnetotransport and carrier-carrier interactions.

Physics Of Semiconductors - Proceedings Of The 20th International Conference (In 3 Volumes)

Physics Of Semiconductors - Proceedings Of The 20th International Conference (In 3 Volumes) PDF Author: E M Anastassakis
Publisher: World Scientific
ISBN: 9814583634
Category :
Languages : en
Pages : 2768

Get Book Here

Book Description
Gathering top experts in the field, the 20th ICPS proceedings reviews the progress in all aspects of semiconductor physics. The proceedings will include state-of-the-art lectures with special emphasis on exciting new developments. It should serve as excellent material for researchers in this and related fields.

Semiconductor Nanostructures

Semiconductor Nanostructures PDF Author: Thomas Ihn
Publisher: Oxford University Press
ISBN: 019953442X
Category : Language Arts & Disciplines
Languages : en
Pages : 569

Get Book Here

Book Description
This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.

VLSI Electronics

VLSI Electronics PDF Author: Norman G. Einspruch
Publisher: Academic Press
ISBN: 148321771X
Category : Technology & Engineering
Languages : en
Pages : 392

Get Book Here

Book Description
VLSI Electronics: Microstructure Science, Volume 4 reviews trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development. This book discusses the silicon-on-insulator for VLSI and VHSIC, X-ray lithography, and transient response of electron transport in GaAs using the Monte Carlo method. The technology and manufacturing of high-density magnetic-bubble memories, metallic superlattices, challenge of education for VLSI, and impact of VLSI on medical signal processing are also elaborated. This text likewise covers the impact of VLSI technology on the design of intelligent measurement instruments and systems. This volume is valuable to scientists and engineers who wish to become familiar with VLSI electronics, device designers concerned with the fundamental character of and limitations to device performance, systems architects who will be charged with tying VLSI circuits together, and engineers conducting work on the utilization of VLSI circuits in specific areas of application.