Physics of Fractal Operators

Physics of Fractal Operators PDF Author: Bruce West
Publisher: Springer Science & Business Media
ISBN: 9780387955544
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.

Physics of Fractal Operators

Physics of Fractal Operators PDF Author: Bruce West
Publisher: Springer Science & Business Media
ISBN: 9780387955544
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality PDF Author: Hafedh Herichi
Publisher: World Scientific
ISBN: 9813230819
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Fractal Physiology

Fractal Physiology PDF Author: James B Bassingthwaighte
Publisher: Springer
ISBN: 1461475724
Category : Medical
Languages : en
Pages : 371

Get Book Here

Book Description
I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.

Physics of Fractal Operators

Physics of Fractal Operators PDF Author: Bruce West
Publisher:
ISBN: 9781468492385
Category : Fractional calculus
Languages : en
Pages : 368

Get Book Here

Book Description
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Physics of Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives. Physics of Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.

Analysis, Probability and Mathematical Physics on Fractals

Analysis, Probability and Mathematical Physics on Fractals PDF Author: Patricia Alonso Ruiz
Publisher:
ISBN: 9789811215537
Category : Electronic books
Languages : en
Pages : 573

Get Book Here

Book Description
"In the 50 years since Mandelbrot identified the fractality of coastlines, mathematicians and physicists have developed a rich and beautiful theory describing the interplay between analytic, geometric and probabilistic aspects of the mathematics of fractals. Using classical and abstract analytic tools developed by Cantor, Hausdorff, and Sierpinski, they have sought to address fundamental questions: How can we measure the size of a fractal set? How do waves and heat travel on irregular structures? How are analysis, geometry and stochastic processes related in the absence of Euclidean smooth structure? What new physical phenomena arise in the fractal-like settings that are ubiquitous in nature? This book introduces background and recent progress on these problems, from both established leaders in the field and early career researchers. The book gives a broad introduction to several foundational techniques in fractal mathematics, while also introducing some specific new and significant results of interest to experts, such as that waves have infinite propagation speed on fractals. It contains sufficient introductory material that it can be read by new researchers or researchers from other areas who want to learn about fractal methods and results"--Publisher's website.

Applications Of Fractional Calculus In Physics

Applications Of Fractional Calculus In Physics PDF Author: Rudolf Hilfer
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.

Networks of Echoes

Networks of Echoes PDF Author: Bruce J. West
Publisher: Springer Science & Business Media
ISBN: 3319048791
Category : Science
Languages : en
Pages : 235

Get Book Here

Book Description
Networks of Echoes: Imitation, Innovation and Invisible Leaders is a mathematically rigorous and data rich book on a fascinating area of the science and engineering of social webs. There are hundreds of complex network phenomena whose statistical properties are described by inverse power laws. The phenomena of interest are not arcane events that we encounter only fleetingly, but are events that dominate our lives. We examine how this intermittent statistical behavior intertwines itself with what appears to be the organized activity of social groups. The book is structured as answers to a sequence of questions such as: How are decisions reached in elections and boardrooms? How is the stability of a society undermined by zealots and committed minorities and how is that stability re-established? Can we learn to answer such questions about human behavior by studying the way flocks of birds retain their formation when eluding a predator? These questions and others are answered using a generic model of a complex dynamic network—one whose global behavior is determined by a symmetric interaction among individuals based on social imitation. The complexity of the network is manifest in time series resulting from self-organized critical dynamics that have divergent first and second moments, are non-stationary, non-ergodic and non-Poisson. How phase transitions in the network dynamics influence such activity as decision making is a fascinating story and provides a context for introducing many of the mathematical ideas necessary for understanding complex networks in general. The decision making model (DMM) is selected to emphasize that there are features of complex webs that supersede specific mechanisms and need to be understood from a general perspective. This insightful overview of recent tools and their uses may serve as an introduction and curriculum guide in related courses.

Fractals, Diffusion, and Relaxation in Disordered Complex Systems

Fractals, Diffusion, and Relaxation in Disordered Complex Systems PDF Author: Yuri P. Kalmykov
Publisher: John Wiley & Sons
ISBN: 0471790257
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
Fractals, Diffusion, and Relaxation in Disordered Complex Systems is a special guest-edited, two-part volume of Advances in Chemical Physics that continues to report recent advances with significant, up-to-date chapters by internationally recognized researchers.

Chaotic Flows

Chaotic Flows PDF Author: Oleg G. Bakunin
Publisher: Springer Science & Business Media
ISBN: 3642203507
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
The book introduces readers to and summarizes the current ideas and theories about the basic mechanisms for transport in chaotic flows. Typically no single paradigmatic approach exists as this topic is relevant for fields as diverse as plasma physics, geophysical flows and various branches of engineering. Accordingly, the dispersion of matter in chaotic or turbulent flows is analyzed from different perspectives. Partly based on lecture courses given by the author, this book addresses both graduate students and researchers in search of a high-level but approachable and broad introduction to the topic.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Anatoly Kochubei
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110571668
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.