Physics-based compact modeling and parameter extraction for InP heterojunction bipolar transistors with special emphasis on material-specific physical effects and geometry scaling

Physics-based compact modeling and parameter extraction for InP heterojunction bipolar transistors with special emphasis on material-specific physical effects and geometry scaling PDF Author: Tobias Nardmann
Publisher: BoD – Books on Demand
ISBN: 3744847063
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
The trend in modern electronics towards ever higher frequencies of operation and complexity as well as power efficiency requires a whole palette of different technologies to be available to circuit designers for various applications. While MOSFETs dominate the digital world, they have apparently reached their top analogue performance around the 65nm node. Emerging technologies such as CNTFETs offer excellent properties such as very high linearity and speed in theory, but have yet to deliver on those promises in practice. Heterojunction bipolar transistors (HBTs), on the other hand, offer a number of key advantages over competing technologies: A very high transconductance and therefore a relatively low impact of a load impedance on the transistor operation, a high transit frequency and maximum frequency of oscillation at a comparatively relaxed feature size and favorable noise characteristics. Like all semiconductor devices, HBTs can be fabricated in diferent semiconductor materials. The most common are SiGe HBTs, which even today reach values above (ft; fmax) = (300; 500) GHz and are projected to eventually reach the THz range. However, HBTs fabricated in III-V materials offer a versatile alternative. Depending on the materials that are used, III-V HBTs can be the fastest available bipolar transistors (competing only with HEMTs, also fabricated in III-V materials, for the title of fastest available transistors overall), offer very high breakdown voltages and therefore excellent power-handling capability, show good linearity or low noise figures at high frequencies. Typical applications for III-V HBTs include handset PAs, high-effciency and high-speed amplifiers as well as high-speed oscillators . Overall, III-V-based HBTs and especially InP HBTs are excellent candidates for future high-speed communication circuits. The goal of this work is to include important effects occurring in III-V materials in a compact model for circuit design in a physical, yet intuitive way in order to aid deployment of III-V HBTs in prototypes and products. Additionally, the parameter extraction procedure for the compact model is described and analyzed in detail so an accurate, physics-based parameter set can be obtained. Finally, the agreement of the model with measurements is demonstrated for three different III-V HBT processes.

Physics-based compact modeling and parameter extraction for InP heterojunction bipolar transistors with special emphasis on material-specific physical effects and geometry scaling

Physics-based compact modeling and parameter extraction for InP heterojunction bipolar transistors with special emphasis on material-specific physical effects and geometry scaling PDF Author: Tobias Nardmann
Publisher: BoD – Books on Demand
ISBN: 3744847063
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
The trend in modern electronics towards ever higher frequencies of operation and complexity as well as power efficiency requires a whole palette of different technologies to be available to circuit designers for various applications. While MOSFETs dominate the digital world, they have apparently reached their top analogue performance around the 65nm node. Emerging technologies such as CNTFETs offer excellent properties such as very high linearity and speed in theory, but have yet to deliver on those promises in practice. Heterojunction bipolar transistors (HBTs), on the other hand, offer a number of key advantages over competing technologies: A very high transconductance and therefore a relatively low impact of a load impedance on the transistor operation, a high transit frequency and maximum frequency of oscillation at a comparatively relaxed feature size and favorable noise characteristics. Like all semiconductor devices, HBTs can be fabricated in diferent semiconductor materials. The most common are SiGe HBTs, which even today reach values above (ft; fmax) = (300; 500) GHz and are projected to eventually reach the THz range. However, HBTs fabricated in III-V materials offer a versatile alternative. Depending on the materials that are used, III-V HBTs can be the fastest available bipolar transistors (competing only with HEMTs, also fabricated in III-V materials, for the title of fastest available transistors overall), offer very high breakdown voltages and therefore excellent power-handling capability, show good linearity or low noise figures at high frequencies. Typical applications for III-V HBTs include handset PAs, high-effciency and high-speed amplifiers as well as high-speed oscillators . Overall, III-V-based HBTs and especially InP HBTs are excellent candidates for future high-speed communication circuits. The goal of this work is to include important effects occurring in III-V materials in a compact model for circuit design in a physical, yet intuitive way in order to aid deployment of III-V HBTs in prototypes and products. Additionally, the parameter extraction procedure for the compact model is described and analyzed in detail so an accurate, physics-based parameter set can be obtained. Finally, the agreement of the model with measurements is demonstrated for three different III-V HBT processes.

Advanced Modeling of Silicon-Germanium Heterojunction Bipolar Transistors

Advanced Modeling of Silicon-Germanium Heterojunction Bipolar Transistors PDF Author: Andreas Pawlak
Publisher: Tudpress Verlag Der Wissenschaften Gmbh
ISBN: 9783959080286
Category :
Languages : en
Pages : 244

Get Book Here

Book Description
Silicon-Germanium Heterojunction Bipolar Transistors (SiGe HBTs) are perfectly suited for high-speed electronics. Since the fabrication costs per design cycle are rapidly increasing with progressing frequency and complexity of the systems, accurate compact models are essential in order to enable robust circuit design. This thesis focuses on selected important physical effects in advanced SiGe HBTs, which have been either insufficiently modeled or completely missing in conventional compact models. New compact model equations for the transfer current were derived and successfully applied to a large set of different technologies. Hereby, the "Generalized Integral Charge Control Relation" was used as a foundation. A physics-based model utilizing small-signal parameters obtained from measurements is derived for modeling the current dependent collector charge. A brief chapter about substrate effects in bipolar transistors comprises the derivation of a compact model for the bias-dependent substrate resistance as well as a proper partitioning of the substrate capacitance. New extraction methods for compact model parameters are introduced and the application of existing methods to advanced processes is discussed. The derived joint extraction method for the emitter and thermal resistance as well as a scalable model for the transfer current have been successfully applied to experimental data of fast HBTs. The derived model equations were applied to a selected very advanced SiGe HBT process developed by IHP. Highly accurate models for DC- and small-signal as well as for large-signal characteristics are presented.

Physics-based Technology Computer-aided Design and Compact Modeling with Special Emphasis on Advanced Indium-phosphide Heterojunction Bipolar Transistors

Physics-based Technology Computer-aided Design and Compact Modeling with Special Emphasis on Advanced Indium-phosphide Heterojunction Bipolar Transistors PDF Author: Markus Müller
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Compact Hierarchical Bipolar Transistor Modeling with Hicum

Compact Hierarchical Bipolar Transistor Modeling with Hicum PDF Author: Michael Schr”ter
Publisher: World Scientific
ISBN: 981427321X
Category : Technology & Engineering
Languages : en
Pages : 753

Get Book Here

Book Description
Compact Hierarchical Bipolar Transistor Modeling with HICUM will be of great practical benefit to professionals from the process development, modeling and circuit design community who are interested in the application of bipolar transistors, which include the SiGe:C HBTs fabricated with existing cutting-edge process technology. The book begins with an overview on the different device designs of modern bipolar transistors, along with their relevant operating conditions; while the subsequent chapter on transistor theory is subdivided into a review of mostly classical theories, brought into context with modern technology, and a chapter on advanced theory that is required for understanding modern device designs. This book aims to provide a solid basis for the understanding of modern compact models.

International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 940

Get Book Here

Book Description


Performance Prediction of a Future Silicon-germanium Heterojunction Bipolar Transistor Technology Using a Heterogeneous Set of Simulation Tools and Approaches

Performance Prediction of a Future Silicon-germanium Heterojunction Bipolar Transistor Technology Using a Heterogeneous Set of Simulation Tools and Approaches PDF Author: Tommy Rosenbaum
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Bipolar complementary metal-oxide-semiconductor (BiCMOS) processescan be considered as the most general solution for RF products, as theycombine the mature manufacturing tools of CMOS with the speed and drivecapabilities of silicon-germanium (SiGe) heterojunction bipolar transistors(HBTs). HBTs in turn are major contenders for partially filling the terahertzgap, which describes the range in which the frequencies generated bytransistors and lasers do not overlap (approximately 0.3THz to 30 THz). Toevaluate the capabilities of such future devices, a reliable prediction methodologyis desirable. Using a heterogeneous set of simulation tools and approachesallows to achieve this goal successively and is beneficial for troubleshooting.Various scientific fields are combined, such as technology computer-aided design(TCAD), compact modeling and parameter extraction.To create a foundation for the simulation environment and to ensure reproducibility,the used material models of the hydrodynamic and drift-diffusionapproaches are introduced in the beginning of this thesis. The physical modelsare mainly based on literature data of Monte Carlo (MC) or deterministicsimulations of the Boltzmann transport equation (BTE). However, the TCADdeck must be calibrated on measurement data too for a reliable performanceprediction of HBTs. The corresponding calibration approach is based onmeasurements of an advanced SiGe HBT technology for which a technology specific parameter set of the HICUM/L2 compact model is extracted for thehigh-speed, medium-voltage and high-voltage transistor versions. With thehelp of the results, one-dimensional transistor characteristics are generatedthat serve as reference for the doping profile and model calibration. By performingelaborate comparisons between measurement-based reference dataand simulations, the thesis advances the state-of-the-art of TCAD-based predictionsand proofs the feasibility of the approach.Finally, the performance of a future technology in 28nm is predicted byapplying the heterogeneous methodology. On the basis of the TCAD results,bottlenecks of the technology are identified.

SPICE Modeling of TeraHertz Heterojunction Bipolar Transistors

SPICE Modeling of TeraHertz Heterojunction Bipolar Transistors PDF Author: Félix Stein
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The aim of BiCMOS technology is to combine two different process technologies intoa single chip, reducing the number of external components and optimizing power consumptionfor RF, analog and digital parts in one single package. Given the respectivestrengths of HBT and CMOS devices, especially high speed applications benefit fromadvanced BiCMOS processes, that integrate two different technologies.For analog mixed-signal RF and microwave circuitry, the push towards lower powerand higher speed imposes requirements and presents challenges not faced by digitalcircuit designs. Accurate compact device models, predicting device behaviour undera variety of bias as well as ambient temperatures, are crucial for the development oflarge scale circuits and create advanced designs with first-pass success.As technology advances, these models have to cover an increasing number of physicaleffects and model equations have to be continuously re-evaluated and adapted. Likewiseprocess scaling has to be verified and reflected by scaling laws, which are closelyrelated to device physics.This thesis examines the suitability of the model formulation for applicability to production-ready SiGe HBT processes. A derivation of the most recent model formulationimplemented in HICUM version L2.3x, is followed by simulation studies, whichconfirm their agreement with electrical characteristics of high-speed devices. Thefundamental geometry scaling laws, as implemented in the custom-developed modellibrary, are described in detail with a strong link to the specific device architecture.In order to correctly determine the respective model parameters, newly developed andexisting extraction routines have been exercised with recent HBT technology generationsand benchmarked by means of numerical device simulation, where applicable.Especially the extraction of extrinsic elements such as series resistances and parasiticcapacitances were improved along with the substrate network.The extraction steps and methods required to obtain a fully scalable model library wereexercised and presented using measured data from a recent industry-leading 55nmSiGe BiCMOS process, reaching switching speeds in excess of 300GHz. Finally theextracted model card was verified for the respective technology.

Transient Electro-Thermal Modeling of Bipolar Power Semiconductor Devices

Transient Electro-Thermal Modeling of Bipolar Power Semiconductor Devices PDF Author: Tanya Kirilova Gachovska
Publisher: Morgan & Claypool Publishers
ISBN: 1627051902
Category : Technology & Engineering
Languages : en
Pages : 85

Get Book Here

Book Description
This book presents physics-based electro-thermal models of bipolar power semiconductor devices including their packages, and describes their implementation in MATLAB and Simulink. It is a continuation of our first book Modeling of Bipolar Power Semiconductor Devices. The device electrical models are developed by subdividing the devices into different regions and the operations in each region, along with the interactions at the interfaces, are analyzed using the basic semiconductor physics equations that govern device behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as junction voltages and carrier distribution in different regions of the device, can be obtained using the models. The instantaneous dissipated power, calculated using the electrical device models, serves as input to the thermal model (RC network with constant and nonconstant thermal resistance and thermal heat capacity, or Fourier thermal model) of the entire module or package, which computes the junction temperature of the device. Once an updated junction temperature is calculated, the temperature-dependent semiconductor material parameters are re-calculated and used with the device electrical model in the next time-step of the simulation. The physics-based electro-thermal models can be used for optimizing device and package design and also for validating extracted parameters of the devices. The thermal model can be used alone for monitoring the junction temperature of a power semiconductor device, and the resulting simulation results used as an indicator of the health and reliability of the semiconductor power device.

Silicon-germanium Heterojunction Bipolar Transistors

Silicon-germanium Heterojunction Bipolar Transistors PDF Author: John D. Cressler
Publisher: Artech House
ISBN: 9781580535991
Category : Science
Languages : en
Pages : 592

Get Book Here

Book Description
This informative, new resource presents the first comprehensive treatment of silicon-germanium heterojunction bipolar transistors (SiGe HBTs). It offers you a complete, from-the-ground-up understanding of SiGe HBT devices and technology, from a very broad perspective. The book covers motivation, history, materials, fabrication, device physics, operational principles, and circuit-level properties associated with this new cutting-edge semiconductor device technology. Including over 400 equations and more than 300 illustrations, this hands-on reference shows you in clear and concise language how to design, simulate, fabricate, and measure a SiGe HBT.

High-speed InP Heterojunction Bipolar Transistors and Integrated Circuits in Transferred Substrate Technology

High-speed InP Heterojunction Bipolar Transistors and Integrated Circuits in Transferred Substrate Technology PDF Author: Tomas Krämer
Publisher:
ISBN: 9783869553931
Category :
Languages : en
Pages : 131

Get Book Here

Book Description