The Physical Processes of Digestion

The Physical Processes of Digestion PDF Author: Roger G. Lentle
Publisher: Springer Science & Business Media
ISBN: 1441994491
Category : Technology & Engineering
Languages : en
Pages : 280

Get Book Here

Book Description
Food research (and funding) is becoming more and more focused on health. While researchers and product developers have made great strides in food engineering, there needs to be increased focus on what happens when the food is actually digested. How is the food absorbed? Do the benefits remain? Digestion is a complex topic, and this will be the first book aimed at food researchers. Authored by a physiologist and a food engineer, the book will be a welcome addition to the literature.

The Physical Processes of Digestion

The Physical Processes of Digestion PDF Author: Roger G. Lentle
Publisher: Springer Science & Business Media
ISBN: 1441994491
Category : Technology & Engineering
Languages : en
Pages : 280

Get Book Here

Book Description
Food research (and funding) is becoming more and more focused on health. While researchers and product developers have made great strides in food engineering, there needs to be increased focus on what happens when the food is actually digested. How is the food absorbed? Do the benefits remain? Digestion is a complex topic, and this will be the first book aimed at food researchers. Authored by a physiologist and a food engineer, the book will be a welcome addition to the literature.

Physical Processes in Clouds and Cloud Modeling

Physical Processes in Clouds and Cloud Modeling PDF Author: Alexander P. Khain
Publisher: Cambridge University Press
ISBN: 0521767431
Category : Nature
Languages : en
Pages : 643

Get Book Here

Book Description
Provides a comprehensive analysis of modern theories of cloud microphysical processes and their representation in numerical cloud models.

Exoplanet Atmospheres

Exoplanet Atmospheres PDF Author: Sara Seager
Publisher: Princeton University Press
ISBN: 1400835305
Category : Science
Languages : en
Pages : 258

Get Book Here

Book Description
Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major physical processes that govern all planetary atmospheres. Moving from first principles to cutting-edge research, Exoplanet Atmospheres is an ideal resource for students and researchers in astronomy and earth sciences, one that will help prepare them for the next generation of planetary science. The first textbook to describe exoplanet atmospheres Illustrates concepts using examples grounded in real data Provides a step-by-step guide to understanding the structure and emergent spectrum of a planetary atmosphere Includes exercises for students

Physical Processes in Solar Flares

Physical Processes in Solar Flares PDF Author: B.V. Somov
Publisher: Springer Science & Business Media
ISBN: 9780792312611
Category : Science
Languages : en
Pages : 270

Get Book Here

Book Description
Solar flares are very complex electromagnetic phenomena of a cataclysmic nature. Particles are accelerated to very high velocities and a variety of physical processes happen inside and outside flares. These processes can be studied by a large number of techniques from Earth and from space. The aim is to discover the physics behind solar flares. This goal is complicated because information about the flare mechanism can be obtained only in an indirect way by studying the secondary effects. This book provides three stages in the solution of the solar flare problem. Chapter one describes the connection between observational data and theoretical concepts, where it is stressed that next to investigating flares, the related non-stationary large-scale phenomena must be studied as well. The second chapter deals with secondary physical processes, in particular the study of high-temperature plasma dynamics during impulsive heating. The last chapter presents a model built on the knowledge of the two previous chapters and it constructs a theory of non-neutral turbulent current sheets. The author believes that this model will help to solve the problem of solar flares. For solar physicists, plasma physicists, high-energy particle physicists.

Physical Processes in Circumstellar Disks Around Young Stars

Physical Processes in Circumstellar Disks Around Young Stars PDF Author: Paulo J. V. Garcia
Publisher: University of Chicago Press
ISBN: 0226282295
Category : Science
Languages : en
Pages : 437

Get Book Here

Book Description
Circumstellar disks are vast expanses of dust that form around new stars in the earliest stages of their birth. Predicted by astronomers as early as the eighteenth century, they weren’t observed until the late twentieth century, when interstellar imaging technology enabled us to see nascent stars hundreds of light years away. Since then, circumstellar disks have become an area of intense study among astrophysicists, largely because they are thought to be the forerunners of planetary systems like our own—the possible birthplaces of planets. This volume brings together a team of leading experts to distill the most up-to-date knowledge of circumstellar disks into a clear introductory volume. Understanding circumstellar disks requires a broad range of scientific knowledge, including chemical processes, the properties of dust and gases, hydrodynamics and magnetohydrodynamics, radiation transfer, and stellar evolution—all of which are covered in this comprehensive work, which will be indispensable for graduate students, seasoned researchers, or even advanced undergrads setting out on the study of planetary evolution.

Physical Processes in the Interstellar Medium

Physical Processes in the Interstellar Medium PDF Author: Lyman Spitzer, Jr.
Publisher: John Wiley & Sons
ISBN: 3527617736
Category : Science
Languages : en
Pages : 335

Get Book Here

Book Description
Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

Physical Processes in Inorganic Scintillators

Physical Processes in Inorganic Scintillators PDF Author: Piotr A. Rodnyi
Publisher: CRC Press
ISBN: 042960629X
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.

Rivers – Physical, Fluvial and Environmental Processes

Rivers – Physical, Fluvial and Environmental Processes PDF Author: Paweł Rowiński
Publisher: Springer
ISBN: 3319177192
Category : Science
Languages : en
Pages : 629

Get Book Here

Book Description
This book describes the domain of research and investigation of physical, chemical and biological attributes of flowing water, and it deals with a cross-disciplinary field of study combining physical, geophysical, hydraulic, technological, environmental interests. It aims to equip engineers, geophysicists, managers working in water-related arenas as well as advanced students and researchers with the most up to date information available on the state of knowledge about rivers, particularly their physical, fluvial and environmental processes. Information from various but also interrelated areas available in one volume is the main benefit for potential readers. All chapters are prepared by leading experts from the leading research laboratories from all over the world.

Physical Processes in Radiation Biology

Physical Processes in Radiation Biology PDF Author: Leroy Augenstein
Publisher: Academic Press
ISBN: 1483223272
Category : Science
Languages : en
Pages : 395

Get Book Here

Book Description
Physical Processes in Radiation Biology covers the proceedings of an International Symposium on Physical Processes in Radiation Biology, held at the Kellogg Center for Continuing Education, Michigan State University on May 6-8, 1963, sponsored by the U.S. Atomic Energy Commission. The symposium aims to address the core problems of radiation biology concerning the absorption, distribution, and utilization of high energy packets in biological systems. This book is composed of 21 chapters, and begins with an introduction to the absorption, excitation, and transfer processes in molecular solids. The subsequent chapters discuss the nature of exciton processes; the mechanisms of charge transport in biological materials; the interactions of fast and slow electrons with model systems; the importance of liquid structures in determining the development of radiation damage; and the nature of the metastable species formed. The concluding chapters explore the importance of charge migration in energy transfer processes in different biological systems and the significance of higher excited levels in charge migration and energy transfer. These chapters also describe the nature of the hydration of electrons and protons in aqueous systems. This book will be of great value to radiation biologists, biophysicists, physical chemists, and physicists.

Physical Processes in Inorganic Scintillators

Physical Processes in Inorganic Scintillators PDF Author: Piotr A. Rodnyi
Publisher: CRC Press
ISBN: 0429611811
Category : Science
Languages : en
Pages : 240

Get Book Here

Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.