Physical and Numerical Modelling of Wave Interaction with a Three-dimensional Submerged Structure

Physical and Numerical Modelling of Wave Interaction with a Three-dimensional Submerged Structure PDF Author: Scott Baker
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Submerged structures are frequently used in coastal engineering applications, such as tunnel and pipeline protection works, breakwaters, and artificial reefs. Although a significant number of research works have focused on low-crested structures, there is far less research into deeply submerged structures. In most research, lightly-sloped, uniform cross-sectioned submerged structures with specific crest elevations are considered. The present thesis deals with the three-dimensional physical and numerical modelling of the interaction of irregular waves with a large-scale three-dimensional submerged structure. It aims to advance the understanding of the structure's influence on the irregular wave field, the wave-induced velocities along the structure crest, and the wave-induced currents. The ability of a nonlinear Boussinesq wave model to simulate these processes is also investigated and assessed. Analysis was performed on a multitude of data, including--but not limited to--wave heights, wave periods, wave energy spectra, energy transfer functions, reflection analyses, and wave-induced velocities. In general, the analysis and comparison performed showed that the numerical model provided a modestly accurate representation of the physical modelling results.

Physical and Numerical Modelling of Wave Interaction with a Three-dimensional Submerged Structure

Physical and Numerical Modelling of Wave Interaction with a Three-dimensional Submerged Structure PDF Author: Scott Baker
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Submerged structures are frequently used in coastal engineering applications, such as tunnel and pipeline protection works, breakwaters, and artificial reefs. Although a significant number of research works have focused on low-crested structures, there is far less research into deeply submerged structures. In most research, lightly-sloped, uniform cross-sectioned submerged structures with specific crest elevations are considered. The present thesis deals with the three-dimensional physical and numerical modelling of the interaction of irregular waves with a large-scale three-dimensional submerged structure. It aims to advance the understanding of the structure's influence on the irregular wave field, the wave-induced velocities along the structure crest, and the wave-induced currents. The ability of a nonlinear Boussinesq wave model to simulate these processes is also investigated and assessed. Analysis was performed on a multitude of data, including--but not limited to--wave heights, wave periods, wave energy spectra, energy transfer functions, reflection analyses, and wave-induced velocities. In general, the analysis and comparison performed showed that the numerical model provided a modestly accurate representation of the physical modelling results.

Physical and Numerical Modelling of Wave Interaction with a 3-D Submerged Structure

Physical and Numerical Modelling of Wave Interaction with a 3-D Submerged Structure PDF Author: Scott Baker
Publisher:
ISBN:
Category : University of Ottawa theses
Languages : en
Pages : 416

Get Book Here

Book Description


Advanced Numerical Modelling of Wave Structure Interaction

Advanced Numerical Modelling of Wave Structure Interaction PDF Author: David M Kelly
Publisher: CRC Press
ISBN: 1351119532
Category : Technology & Engineering
Languages : en
Pages : 260

Get Book Here

Book Description
This book will serve as a reference guide, and state-of-the-art review, for the wide spectrum of numerical models and computational techniques available to solve some of the most challenging problems in coastal engineering. The topics covered in this book, are explained fundamentally from a numerical perspective and also include practical examples applications. Important classic themes such as wave generation, propagation and breaking, turbulence modelling and sediment transport are complemented by hot topics such as fluid and structure interaction or multi-body interaction to provide an integral overview on numerical techniques for coastal engineering. Through the vision of 10 high impact authors, each an expert in one or more of the fields included in this work, the chapters offer a broad perspective providing several different approaches, which the readers can compare critically to select the most suitable for their needs. Advanced Numerical Modelling of Wave Structure Interaction will be useful for a wide audience, including PhD students, research scientists, numerical model developers and coastal engineering consultants alike.

Advances in Numerical Simulation of Nonlinear Water Waves

Advances in Numerical Simulation of Nonlinear Water Waves PDF Author: Qingwei Ma
Publisher: World Scientific
ISBN: 9812836500
Category : Mathematics
Languages : en
Pages : 700

Get Book Here

Book Description
Ch. 1. Model for fully nonlinear ocean wave simulations derived using Fourier inversion of integral equations in 3D / J. Grue and D. Fructus -- ch. 2. Two-dimensional direct numerical simulations of the dynamics of rogue waves under wind action / J. Touboul and C. Kharif -- ch. 3. Progress in fully nonlinear potential flow modeling of 3D extreme ocean waves / S.T. Grilli [und weitere] -- ch. 4. Time domain simulation of nonlinear water waves using spectral methods / F. Bonnefoy [und weitere] -- ch. 5. QALE-FEM method and its application to the simulation of free-responses of floating bodies and overturning waves / Q.W. Ma and S. Yan -- ch. 6. Velocity calculation methods in finite element based MEL formulation / V. Sriram, S.A. Sannasiraj and V. Sundar -- ch. 7. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water / P.A. Madsen and D.R. Fuhrman -- ch. 8. Inter-comparisons of different forms of higher-order Boussinesq equations / Z.L. Zou, K.Z. Fang and Z.B. Liu -- ch. 9. Method of fundamental solutions for fully nonlinear water waves / D.-L. Young, N.-J. Wu and T.-K. Tsay -- ch. 10. Application of the finite volume method to the simulation of nonlinear water waves / D. Greaves -- ch. 11. Developments in multi-fluid finite volume free surface capturing method / D.M. Causon, C.G. Mingham and L. Qian -- ch. 12. Numerical computation methods for strongly nonlinear wave-body interactions / M. Kashiwagi, C. Hu and M. Sueyoshi -- ch. 13. Smoothed particle hydrodynamics for water waves / R.A. Dalrymple [und weitere] -- ch. 14. Modelling nonlinear water waves with RANS and LES SPH models / R. Issa [und weitere] -- ch. 15. MLPG_R method and Its application to various nonlinear water waves / Q.W. Ma -- ch. 16. Large Eddy simulation of the hydrodynamics generated by breaking waves / P. Lubin and J.-P. Caltagirone -- ch. 17. Recent advances in turbulence modeling for unsteady breaking waves / Q. Zhao and S.W. Armfield -- ch. 18. Freak waves and their interaction with ships and offshore structures / G.F. Clauss

Numerical Modelling of Nonlinear Interactions of Waves with Submerged Structures

Numerical Modelling of Nonlinear Interactions of Waves with Submerged Structures PDF Author: Etienne Guerber
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This PhD is dedicated to the development of an advanced numerical model for simulating interactions between free surface waves of arbitrary steepness and rigid bodies in high amplitude motions. Based on potential theory, it solves the coupled dynamics of waves and structure with the implicit method by Van Daalen (1993), also named the acceleration potential method by Tanizawa (1995). The precision of this two-dimensional model is tested on a wide range of applications involving the forced motion or free motion of a submerged horizontal cylinder of circular cross-section : diffraction by a fixed cylinder, radiation by a cylinder in specified high amplitude motions, wave absorption by the Bristol cylinder. In each of these applications, numerical results are compared to experimental data or analytical solutions based on the linear wave theory, with a good agreement especially for small amplitude motions of the cylinder and small wave steepnesses. The irregular wave generation by a paddle and the possibility to add an extra circular cylinder are integrated in the model and illustrated on practical applications with simple wave energy converters. The model is finally extended to three dimensions, with preliminary results for a sphere in large amplitude heaving oscillations.

Advanced Numerical Modelling of Wave Structure Interaction

Advanced Numerical Modelling of Wave Structure Interaction PDF Author: David Kelly
Publisher: CRC Press
ISBN: 9780815359975
Category :
Languages : en
Pages : 210

Get Book Here

Book Description
"Due to the growth in cheap computing power, over the last decade the numerical modelling of wave structure interaction has entered a new phase. Increasingly sophisticated mathematical models now allow for the most realistic modelling of fluid structure interaction ever achieved. Advanced Numerical Modelling of Wave Structure Interaction contains contributions from a wide range of experts in the field of numerical modelling for coastal engineering. Chapters present state-of-the-art numerical approaches for aspects of fluid structure interaction ranging from wave-breakwater interaction to the effect of vegetation on currents. This book aims to serve as a comprehensive guide to up-to-date numerical techniques used for a wide variety of fluid structure interaction problems within a coastal engineering context"--

Numerical Modeling of Water Waves

Numerical Modeling of Water Waves PDF Author: Charles L. Mader
Publisher: CRC Press
ISBN: 0203492196
Category : Mathematics
Languages : en
Pages : 289

Get Book Here

Book Description
Numerical Modeling of Water Waves, Second Edition covers all aspects of this subject, from the basic fluid dynamics and the simplest models to the latest and most complex, including the first-ever description of techniques for modeling wave generation by explosions, projectile impacts, asteroids, and impact landslides. The book comes packaged with

Numerical Modeling of Water Waves

Numerical Modeling of Water Waves PDF Author: Pengzhi Lin
Publisher: CRC Press
ISBN: 1482265915
Category : Technology & Engineering
Languages : en
Pages : 500

Get Book Here

Book Description
Modelling large-scale wave fields and their interaction with coastal and offshore structures has become much more feasible over the last two decades with increases in computer speeds. Wave modelling can be viewed as an extension of wave theory, a mature and widely published field, applied to practical engineering through the use of computer tools.

Wave Propagation in Infinite Domains

Wave Propagation in Infinite Domains PDF Author: Lutz Lehmann
Publisher: Springer Science & Business Media
ISBN: 3540711090
Category : Science
Languages : en
Pages : 185

Get Book Here

Book Description
This book presents theoretical fundamentals and applications of a new numerical model that has the ability to simulate wave propagation. Coverage examines linear waves in ideal fluids and elastic domains. In addition, the book includes a numerical simulation of wave propagation based on scalar and vector wave equations, as well as fluid-structure interaction and soil-structure interaction.

Advances in Wave Interaction and Turbulence

Advances in Wave Interaction and Turbulence PDF Author: Paul A. Milewski
Publisher: American Mathematical Soc.
ISBN: 9780821856192
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
We often think of our natural environment as being composed of very many interacting particles, undergoing individual chaotic motions, of which only very coarse averages are perceptible at scales natural to us. However, we could as well think of the world as being made out of individual waves. This is so not just because the distinction between waves and particles becomes rather blurred at the atomic level, but also because even phenomena at much larger scales are better describedin terms of waves rather than of particles: It is rare in both fluids and solids to observe energy being carried from one region of space to another by a given set of material particles; much more often, this transfer occurs through chains of particles, neither of them moving much, but eachcommunicating with the next, and hence creating these immaterial objects we call waves. Waves occur at many spatial and temporal scales. Many of these waves have small enough amplitude that they can be approximately described by linear theory. However, the joint effect of large sets of waves is governed by nonlinear interactions which are responsible for huge cascades of energy among very disparate scales. Understanding these energy transfers is crucial in order to determine the response oflarge systems, such as the atmosphere and the ocean, to external forcings and dissipation mechanisms which act on scales decades apart. The field of wave turbulence attempts to understand the average behavior of large ensembles of waves, subjected to forcing and dissipation at opposite ends of theirspectrum. It does so by studying individual mechanisms for energy transfer, such as resonant triads and quartets, and attempting to draw from them effects that should not survive averaging. This book presents the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Dispersive Wave Turbulence held at Mt. Holyoke College (MA). It drew together a group of researchers from many corners of the world, in the context of a perceived renaissance of the field, driven by heated debate aboutthe fundamental mechanism of energy transfer among large sets of waves, as well as by novel applications-and old ones revisited-to the understanding of the natural world. These proceedings reflect the spirit that permeated the conference, that of friendly scientific disagreement and genuine wonderat the rich phenomenology of waves.