Author: Katie M. Becklin
Publisher: Springer Nature
ISBN: 3030649261
Category : Science
Languages : en
Pages : 407
Book Description
Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12).
Photosynthesis, Respiration, and Climate Change
Author: Katie M. Becklin
Publisher: Springer Nature
ISBN: 3030649261
Category : Science
Languages : en
Pages : 407
Book Description
Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12).
Publisher: Springer Nature
ISBN: 3030649261
Category : Science
Languages : en
Pages : 407
Book Description
Changes in atmospheric carbon dioxide concentrations and global climate conditions have altered photosynthesis and plant respiration across both geologic and contemporary time scales. Understanding climate change effects on plant carbon dynamics is critical for predicting plant responses to future growing conditions. Furthermore, demand for biofuel, fibre and food production is rapidly increasing with the ever-expanding global human population, and our ability to meet these demands is exacerbated by climate change. This volume integrates physiological, ecological, and evolutionary perspectives on photosynthesis and respiration responses to climate change. We explore this topic in the context of modeling plant responses to climate, including physiological mechanisms that constrain carbon assimilation and the potential for plants to acclimate to rising carbon dioxide concentration, warming temperatures and drought. Additional chapters contrast climate change responses in natural and agricultural ecosystems, where differences in climate sensitivity between different photosynthetic pathways can influence community and ecosystem processes. Evolutionary studies over past and current time scales provide further insight into evolutionary changes in photosynthetic traits, the emergence of novel plant strategies, and the potential for rapid evolutionary responses to future climate conditions. Finally, we discuss novel approaches to engineering photosynthesis and photorespiration to improve plant productivity for the future. The overall goals for this volume are to highlight recent advances in photosynthesis and respiration research, and to identify key challenges to understanding and scaling plant physiological responses to climate change. The integrated perspectives and broad scope of research make this volume an excellent resource for both students and researchers in many areas of plant science, including plant physiology, ecology, evolution, climate change, and biotechnology. For this volume, 37 experts contributed chapters that span modeling, empirical, and applied research on photosynthesis and respiration responses to climate change. Authors represent the following seven countries: Australia (6); Canada (9), England (5), Germany (2), Spain (3), and the United States (12).
Photosynthesis in a Changing Global Climate: a Matter of Scale
Author: Iker Aranjuelo
Publisher: Frontiers Media SA
ISBN: 2889665135
Category : Science
Languages : en
Pages : 215
Book Description
Publisher: Frontiers Media SA
ISBN: 2889665135
Category : Science
Languages : en
Pages : 215
Book Description
Plant Perspectives to Global Climate Changes
Author: Tariq Aftab
Publisher: Academic Press
ISBN: 0323885888
Category : Science
Languages : en
Pages : 558
Book Description
Plant Perspectives to Global Climate Changes: Developing Climate-Resilient Plants reviews and integrates currently available information on the impact of the environment on functional and adaptive features of plants from the molecular, biochemical and physiological perspectives to the whole plant level. The book also provides a direction towards implementation of programs and practices that will enable sustainable production of crops resilient to climatic alterations. This book will be beneficial to academics and researchers working on stress physiology, stress proteins, genomics, proteomics, genetic engineering, and other fields of plant physiology. Advancing ecophysiological understanding and approaches to enhance plant responses to new environmental conditions is critical to developing meaningful high-throughput phenotyping tools and maintaining humankind's supply of goods and services as global climate change intensifies. - Illustrates the central role for plant ecophysiology in applying basic research to address current and future challenges for humans - Brings together global leaders working in the area of plant-environment interactions and shares research findings - Presents current scenarios and future plans of action for the management of stresses through various approaches
Publisher: Academic Press
ISBN: 0323885888
Category : Science
Languages : en
Pages : 558
Book Description
Plant Perspectives to Global Climate Changes: Developing Climate-Resilient Plants reviews and integrates currently available information on the impact of the environment on functional and adaptive features of plants from the molecular, biochemical and physiological perspectives to the whole plant level. The book also provides a direction towards implementation of programs and practices that will enable sustainable production of crops resilient to climatic alterations. This book will be beneficial to academics and researchers working on stress physiology, stress proteins, genomics, proteomics, genetic engineering, and other fields of plant physiology. Advancing ecophysiological understanding and approaches to enhance plant responses to new environmental conditions is critical to developing meaningful high-throughput phenotyping tools and maintaining humankind's supply of goods and services as global climate change intensifies. - Illustrates the central role for plant ecophysiology in applying basic research to address current and future challenges for humans - Brings together global leaders working in the area of plant-environment interactions and shares research findings - Presents current scenarios and future plans of action for the management of stresses through various approaches
Photosynthesis in silico
Author: Agu Laisk
Publisher: Springer Science & Business Media
ISBN: 1402092377
Category : Science
Languages : en
Pages : 514
Book Description
Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems is a unique book that aims to show an integrated approach to the understanding of photosynthesis processes. In this volume - using mathematical modeling - processes are described from the biophysics of the interaction of light with pigment systems to the mutual interaction of individual plants and other organisms in canopies and large ecosystems, up to the global ecosystem issues. Chapters are written by 44 international authorities from 15 countries. Mathematics is a powerful tool for quantitative analysis. Properly programmed, contemporary computers are able to mimic complicated processes in living cells, leaves, canopies and ecosystems. These simulations - mathematical models - help us predict the photosynthetic responses of modeled systems under various combinations of environmental conditions, potentially occurring in nature, e.g., the responses of plant canopies to globally increasing temperature and atmospheric CO2 concentration. Tremendous analytical power is needed to understand nature's infinite complexity at every level.
Publisher: Springer Science & Business Media
ISBN: 1402092377
Category : Science
Languages : en
Pages : 514
Book Description
Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems is a unique book that aims to show an integrated approach to the understanding of photosynthesis processes. In this volume - using mathematical modeling - processes are described from the biophysics of the interaction of light with pigment systems to the mutual interaction of individual plants and other organisms in canopies and large ecosystems, up to the global ecosystem issues. Chapters are written by 44 international authorities from 15 countries. Mathematics is a powerful tool for quantitative analysis. Properly programmed, contemporary computers are able to mimic complicated processes in living cells, leaves, canopies and ecosystems. These simulations - mathematical models - help us predict the photosynthetic responses of modeled systems under various combinations of environmental conditions, potentially occurring in nature, e.g., the responses of plant canopies to globally increasing temperature and atmospheric CO2 concentration. Tremendous analytical power is needed to understand nature's infinite complexity at every level.
Global Biogeochemical Cycles in the Climate System
Author: Ernst-Detlef Schulze
Publisher: Elsevier
ISBN: 0080507409
Category : Science
Languages : en
Pages : 373
Book Description
The interactions of biogeochemical cycles influence and maintain our climate system. Land use and fossil fuel emissions are currently impacting the biogeochemical cycles of carbon, nitrogen and sulfur on land, in the atmosphere, and in the oceans.This edited volume brings together 27 scholarly contributions on the state of our knowledge of earth system interactions among the oceans, land, and atmosphere. A unique feature of this treatment is the focus on the paleoclimatic and paleobiotic context for investigating these complex interrelationships.* Eight-page colour insert to highlight the latest research* A unique feature of this treatment is the focus on the paleoclimatic context for investigating these complex interrelationships.
Publisher: Elsevier
ISBN: 0080507409
Category : Science
Languages : en
Pages : 373
Book Description
The interactions of biogeochemical cycles influence and maintain our climate system. Land use and fossil fuel emissions are currently impacting the biogeochemical cycles of carbon, nitrogen and sulfur on land, in the atmosphere, and in the oceans.This edited volume brings together 27 scholarly contributions on the state of our knowledge of earth system interactions among the oceans, land, and atmosphere. A unique feature of this treatment is the focus on the paleoclimatic and paleobiotic context for investigating these complex interrelationships.* Eight-page colour insert to highlight the latest research* A unique feature of this treatment is the focus on the paleoclimatic context for investigating these complex interrelationships.
Alternative Respiratory Pathways in Higher Plants
Author: Kapuganti Jagadis Gupta
Publisher: John Wiley & Sons
ISBN: 1118790464
Category : Science
Languages : en
Pages : 398
Book Description
Rapid developments in molecular and systems biology techniques have allowed researchers to unravel many new mechanisms through which plant cells switch over to alternative respiratory pathways. This book is a unique compendium of how and why higher plants evolved alternative respiratory metabolism. It offers a comprehensive review of current research in the biochemistry, physiology, classification and regulation of plant alternative respiratory pathways, from alternative oxidase diversity to functional marker development. The resource provides a broad range of perspectives on the applications of plant respiratory physiology, and suggests brand new areas of research. Other key features: written by an international team of reputed plant physiologists, known for their pioneering contributions to the knowledge of regular and alternative respiratory metabolism in higher plants includes step-by-step protocols for key molecular and imaging techniques advises on regulatory options for managing crop yields, food quality and environment for crop improvement and enhanced food security covers special pathways which are of key relevance in agriculture, particularly in plant post-harvest commodities Primarily for plant physiologists and plant biologists, this authoritative compendium will also be of great value to postdoctoral researchers working on plant respiration, as well as to graduate and postgraduate students and university staff in Plant Science. It is a useful resource for corporate and private firms involved in developing functional markers for breeding programs and controlling respiration for the prevention of post-harvest losses in fruit, vegetables, cut flowers and tubers.
Publisher: John Wiley & Sons
ISBN: 1118790464
Category : Science
Languages : en
Pages : 398
Book Description
Rapid developments in molecular and systems biology techniques have allowed researchers to unravel many new mechanisms through which plant cells switch over to alternative respiratory pathways. This book is a unique compendium of how and why higher plants evolved alternative respiratory metabolism. It offers a comprehensive review of current research in the biochemistry, physiology, classification and regulation of plant alternative respiratory pathways, from alternative oxidase diversity to functional marker development. The resource provides a broad range of perspectives on the applications of plant respiratory physiology, and suggests brand new areas of research. Other key features: written by an international team of reputed plant physiologists, known for their pioneering contributions to the knowledge of regular and alternative respiratory metabolism in higher plants includes step-by-step protocols for key molecular and imaging techniques advises on regulatory options for managing crop yields, food quality and environment for crop improvement and enhanced food security covers special pathways which are of key relevance in agriculture, particularly in plant post-harvest commodities Primarily for plant physiologists and plant biologists, this authoritative compendium will also be of great value to postdoctoral researchers working on plant respiration, as well as to graduate and postgraduate students and university staff in Plant Science. It is a useful resource for corporate and private firms involved in developing functional markers for breeding programs and controlling respiration for the prevention of post-harvest losses in fruit, vegetables, cut flowers and tubers.
Photosynthesis and Production in a Changing Environment
Author: D.O. Hall
Publisher: Springer Science & Business Media
ISBN: 9401115664
Category : Science
Languages : en
Pages : 503
Book Description
The majority of the world's people depend research work should be carried out at the local and regional level by locally trained on plants for their livelihood since they grow them for food, fuel, timber, fodder and people. many other uses. A good understanding Following the success of our earlier book of the practical factors which govern the (Techniques in Bioproductivity and Photo synthesis; Pergamon Press, 1985), which productivity of plants through the process of photosynthesis is therefore of paramount was translated into four major languages, importance, especially in the light of cur the editors and contributors have exten rent concern about global climate change sively revised the content and widened the and the response of both crops and natural scope of the text,· so it now bears a title ecosystems. in line with current concern over global The origins of this book lie in a series of climate change. · In particular, we have training courses sponsored by the United added chapters on remote sensing, con Nations Environment Programme (Project trolled-environment studies, chlorophyll No. FP/6108-88-0l (2855); 'Environment fluorescence, metabolite partitioning and changes and the productivity of tropical the use of mass isotopes, all of which grasslands'), with additional support from techniques are increasing in their applica many international and national agencies. tion and importance to this subject area.
Publisher: Springer Science & Business Media
ISBN: 9401115664
Category : Science
Languages : en
Pages : 503
Book Description
The majority of the world's people depend research work should be carried out at the local and regional level by locally trained on plants for their livelihood since they grow them for food, fuel, timber, fodder and people. many other uses. A good understanding Following the success of our earlier book of the practical factors which govern the (Techniques in Bioproductivity and Photo synthesis; Pergamon Press, 1985), which productivity of plants through the process of photosynthesis is therefore of paramount was translated into four major languages, importance, especially in the light of cur the editors and contributors have exten rent concern about global climate change sively revised the content and widened the and the response of both crops and natural scope of the text,· so it now bears a title ecosystems. in line with current concern over global The origins of this book lie in a series of climate change. · In particular, we have training courses sponsored by the United added chapters on remote sensing, con Nations Environment Programme (Project trolled-environment studies, chlorophyll No. FP/6108-88-0l (2855); 'Environment fluorescence, metabolite partitioning and changes and the productivity of tropical the use of mass isotopes, all of which grasslands'), with additional support from techniques are increasing in their applica many international and national agencies. tion and importance to this subject area.
Plant Respiration
Author: Hans Lambers
Publisher: Springer Science & Business Media
ISBN: 1402035896
Category : Science
Languages : en
Pages : 265
Book Description
Respiration in plants, as in all living organisms, is essential to provide metabolic energy and carbon skeletons for growth and maintenance. As such, respiration is an essential component of a plant’s carbon budget. Depending on species and environmental conditions, it consumes 25-75% of all the carbohydrates produced in photosynthesis – even more at extremely slow growth rates. Respiration in plants can also proceed in a manner that produces neither metabolic energy nor carbon skeletons, but heat. This type of respiration involves the cyanide-resistant, alternative oxidase; it is unique to plants, and resides in the mitochondria. The activity of this alternative pathway can be measured based on a difference in fractionation of oxygen isotopes between the cytochrome and the alternative oxidase. Heat production is important in some flowers to attract pollinators; however, the alternative oxidase also plays a major role in leaves and roots of most plants. A common thread throughout this volume is to link respiration, including alternative oxidase activity, to plant functioning in different environments.
Publisher: Springer Science & Business Media
ISBN: 1402035896
Category : Science
Languages : en
Pages : 265
Book Description
Respiration in plants, as in all living organisms, is essential to provide metabolic energy and carbon skeletons for growth and maintenance. As such, respiration is an essential component of a plant’s carbon budget. Depending on species and environmental conditions, it consumes 25-75% of all the carbohydrates produced in photosynthesis – even more at extremely slow growth rates. Respiration in plants can also proceed in a manner that produces neither metabolic energy nor carbon skeletons, but heat. This type of respiration involves the cyanide-resistant, alternative oxidase; it is unique to plants, and resides in the mitochondria. The activity of this alternative pathway can be measured based on a difference in fractionation of oxygen isotopes between the cytochrome and the alternative oxidase. Heat production is important in some flowers to attract pollinators; however, the alternative oxidase also plays a major role in leaves and roots of most plants. A common thread throughout this volume is to link respiration, including alternative oxidase activity, to plant functioning in different environments.
Surface Temperature Reconstructions for the Last 2,000 Years
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309102251
Category : Science
Languages : en
Pages : 160
Book Description
In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change.
Publisher: National Academies Press
ISBN: 0309102251
Category : Science
Languages : en
Pages : 160
Book Description
In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change.
The Global Carbon Cycle and Climate Change
Author: David E. Reichle
Publisher: Elsevier
ISBN: 0128217677
Category : Science
Languages : en
Pages : 390
Book Description
The Global Carbon Cycle and Climate Change examines the global carbon cycle and the energy balance of the biosphere, following carbon and energy through increasingly complex levels of metabolism from cells to ecosystems. Utilizing scientific explanations, analyses of ecosystem functions, extensive references, and cutting-edge examples of energy flow in ecosystems, it is an essential resource to aid in understanding the scientific basis of the role played by ecological systems in climate change. This book addresses the need to understand the global carbon cycle and the interrelationships among the disciplines of biology, chemistry, and physics in a holistic perspective. The Global Carbon Cycle and Climate Change is a compendium of easily accessible, technical information that provides a clear understanding of energy flow, ecosystem dynamics, the biosphere, and climate change. "Dr. Reichle brings over four decades of research on the structure and function of forest ecosystems to bear on the existential issue of our time, climate change. Using a comprehensive review of carbon biogeochemistry as scaled from the physiology of organisms to landscape processes, his analysis provides an integrated discussion of how diverse processes at varying time and spatial scales function. The work speaks to several audiences. Too often students study their courses in a vacuum without necessarily understanding the relationships that transcend from the cellular process, to organism, to biosphere levels and exist in a dynamic atmosphere with its own processes, and spatial dimensions. This book provides the template whereupon students can be guided to see how the pieces fit together. The book is self-contained but lends itself to be amplified upon by a student or professor. The same intellectual quest would also apply for the lay reader who seeks a broad understanding." --W.F. Harris - Provides clear explanations, examples, and data for understanding fossil fuel emissions affecting atmospheric CO2 levels and climate change, and the role played by ecosystems in the global cycle of energy and carbon - Presents a comprehensive, factually based synthesis of the global cycle of carbon in the biosphere and the underlying scientific bases - Includes clear illustrations of environmental processes
Publisher: Elsevier
ISBN: 0128217677
Category : Science
Languages : en
Pages : 390
Book Description
The Global Carbon Cycle and Climate Change examines the global carbon cycle and the energy balance of the biosphere, following carbon and energy through increasingly complex levels of metabolism from cells to ecosystems. Utilizing scientific explanations, analyses of ecosystem functions, extensive references, and cutting-edge examples of energy flow in ecosystems, it is an essential resource to aid in understanding the scientific basis of the role played by ecological systems in climate change. This book addresses the need to understand the global carbon cycle and the interrelationships among the disciplines of biology, chemistry, and physics in a holistic perspective. The Global Carbon Cycle and Climate Change is a compendium of easily accessible, technical information that provides a clear understanding of energy flow, ecosystem dynamics, the biosphere, and climate change. "Dr. Reichle brings over four decades of research on the structure and function of forest ecosystems to bear on the existential issue of our time, climate change. Using a comprehensive review of carbon biogeochemistry as scaled from the physiology of organisms to landscape processes, his analysis provides an integrated discussion of how diverse processes at varying time and spatial scales function. The work speaks to several audiences. Too often students study their courses in a vacuum without necessarily understanding the relationships that transcend from the cellular process, to organism, to biosphere levels and exist in a dynamic atmosphere with its own processes, and spatial dimensions. This book provides the template whereupon students can be guided to see how the pieces fit together. The book is self-contained but lends itself to be amplified upon by a student or professor. The same intellectual quest would also apply for the lay reader who seeks a broad understanding." --W.F. Harris - Provides clear explanations, examples, and data for understanding fossil fuel emissions affecting atmospheric CO2 levels and climate change, and the role played by ecosystems in the global cycle of energy and carbon - Presents a comprehensive, factually based synthesis of the global cycle of carbon in the biosphere and the underlying scientific bases - Includes clear illustrations of environmental processes