Photocatalytically Active and Optically Transparent Titanium Dioxide Thin Films Prepared by Ion Assisted Physical Vapor Deposition

Photocatalytically Active and Optically Transparent Titanium Dioxide Thin Films Prepared by Ion Assisted Physical Vapor Deposition PDF Author: Redouan Boughaled el Lakhmissi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Photocatalytically Active and Optically Transparent Titanium Dioxide Thin Films Prepared by Ion Assisted Physical Vapor Deposition

Photocatalytically Active and Optically Transparent Titanium Dioxide Thin Films Prepared by Ion Assisted Physical Vapor Deposition PDF Author: Redouan Boughaled el Lakhmissi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Nanostructured Titanium Dioxide Materials

Nanostructured Titanium Dioxide Materials PDF Author: Ali Reza Khataee
Publisher: World Scientific
ISBN: 9814374733
Category : Science
Languages : en
Pages : 205

Get Book Here

Book Description
Ch. 1. Introduction -- ch. 2. Properties of titanium dioxide and its nanoparticles. 2.1. Structural and crystallographic properties. 2.2. Photocatalytic properties of nanostructured titanium dioxide -- ch. 3. Preparation of nanostructured titanium dioxide and titanates. 3.1. Vapor deposition method. 3.2. Solvothermal method. 3.3. Electrochemical approaches. 3.4. Solution combustion method. 3.5. Microemulsion technique. 3.6. Micelle and inverse Micelle methods. 3. 7. Combustion flame-chemical vapor condensation process. 3.8. Sonochemical reactions. 3.9. Plasma evaporation. 3.10. Hydrothermal processing. 3.11. Sol-Gel technology -- ch. 4. Applications of nanostructured titanium dioxide. 4.1. Dye-sensitized solar cells. 4.2. Hydrogen production. 4.3. Hydrogen storage. 4.4. Sensors. 4.5. Batteries. 4.6. Cancer prevention and treatment. 4.7. Antibacterial and self-cleaning applications. 4.8. Electrocatalysis. 4.9. Photocatalytic applications of titanium dioxide nanomaterials -- ch. 5. Supported and immobilized titanium dioxide nanomaterials. 5.1. Immobilization on glass substrates. 5.2. Immobilization on stone, ceramic, cement and zeolite. 5.3. Immobilization on metallic and metal oxide materials. 5.4. Immobilization on polymer substrates

Ultrahigh Vacuum Metalorganic Chemical Vapor Deposition and in Situ Characterization of Nanoscale Titanium Dioxide Films

Ultrahigh Vacuum Metalorganic Chemical Vapor Deposition and in Situ Characterization of Nanoscale Titanium Dioxide Films PDF Author: Polly Wanda Chu
Publisher:
ISBN:
Category :
Languages : en
Pages : 434

Get Book Here

Book Description
Thin titanium dioxide films were produced by metalorganic chemical vapor deposition on sapphire(0001) in an ultrahigh vacuum (UHV) chamber. A method was developed for producing controlled submonolayer depositions from titanium isopropoxide precursor. Film thickness ranged from 0.1 to 2.7 nm. In situ X-ray photoelectron spectroscopy (XPS) was used to determine film stoichiometry with increasing thickness. The effect of isothermal annealing on desorption was evaluated. Photoelectron peak shapes and positions from the initial monolayers were analyzed for evidence of interface reaction. Deposition from titanium isopropoxide is divided into two regimes: depositions below and above the pyrolysis temperature. This temperature was determined to be 300 deg C. Controlled submonolayers of titanium oxide were produced by cycles of dosing with titanium isopropoxide vapor below and annealing above 300 deg C. Precursor adsorption below the pyrolysis temperature was observed to saturate after 15 minutes of dosing. The quantity absorbed was shown to have an upper limit of one monolayer. The stoichiometry of thin films grown by the cycling method were determined to be TiO2. Titanium dioxide film stoichiometry was unaffected by isothermal annealing at 700 deg C. Annealing produced a decrease in film thickness. This was explained as due to desorption. Desorption ceased at approximately 2.5 to 3 monolayers, suggesting bonding of the initial monolayers of film to sapphire is stronger than to itself. Evidence of sapphire reduction at the interface by the depositions was not observed. The XPS O is peak shifted with increased film thickness. The shifts were consistent with oxygen in sapphire and titanium dioxide having different O is photoelectron peak positions. Simulations showed the total shifts for thin films ranging in thickness of 0.1 to 2.7 nm to be -0.99 to -1.23 eV. Thick films were produced for comparison.

Titanium Dioxide

Titanium Dioxide PDF Author: Dongfang Yang
Publisher: BoD – Books on Demand
ISBN: 1789233267
Category : Technology & Engineering
Languages : en
Pages : 520

Get Book Here

Book Description
Titanium dioxide is currently being used in many industrial products. It provides unique photocatalytic properties for water splitting and purification, bacterial inactivation, and organics degradation. It has also been widely used as the photoanode for dye-sensitized solar cells and coatings for self-cleaning surfaces, biomedical implants, and nanomedicine. This book covers various aspects of titanium dioxide nanomaterials including their unique one-dimensional, two-dimensional, mesoporous, and hierarchical nanostructures and their synthetic methods such as sol-gel, hydrothermal, anodic oxidation, and electrophoretic deposition, as well as its key applications in environmental and energy sectors. Through these 24 chapters written by experts from the international scientific community, readers will have access to a comprehensive overview of the recent research and development findings on the titanium dioxide nanomaterials.

Nanostructured Titanium Dioxide in Photocatalysis

Nanostructured Titanium Dioxide in Photocatalysis PDF Author: It-Meng Low
Publisher: CRC Press
ISBN: 1000348288
Category : Technology & Engineering
Languages : en
Pages : 250

Get Book Here

Book Description
Titanium dioxide (TiO2) has drawn considerable attention as an attractive inorganic raw material for various applications due to its inexpensiveness, nontoxic nature, stability, and excellent photocatalytic activity. Photocatalysis is one of the most promising route for sustainable chemistry of the 21st century. It can contribute to solving environmental, global energy, and chemical problems, as well as to the sustainable production of commodities in the near future. This book presents the fundamentals of photocatalysis in nanostructured TiO2 and describes the factors affecting the photocatalytic activity, design, and synthesis of various forms of nanostructured TiO2. It highlights the use of ion-doping and inert-atmosphere annealing to extend the light-absorption range of photocatalysts and reduce recombination between electrons and holes. It discusses numerous applications in the fields of energy and environment, such as water purification, gas sensing, storage and delivery, and energy generation. The book is an invaluable resource and useful guide for a broad readership in various fields of catalysis, materials science, environment, and energy.

Aerosol-Assisted Chemical Vapour Deposition of Doped Titania Films; Characterisation and Functional Properties

Aerosol-Assisted Chemical Vapour Deposition of Doped Titania Films; Characterisation and Functional Properties PDF Author: Abdullah Mohmmed Alotaibi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Titanium dioxide (TiO2) is the leading material for self-cleaning applications due to its unique propertiesAÌ‚ ̧ including the fact that it exhibits high photocatalysis, mechanical robustness, chemical inertness, low cost, environmentally friendliness and abundance. The bandgap of TiO2 is relatively large, and this limits its outdoor applications. Another obstacle for its use as a photocatalyst is the high level of electron"â€hole recombination and low rate of photoreaction with reactants. There have been great efforts to improve the photocatalytic properties of TiO2. These have involved searching for ways of decreasing the bandgap structure and recombination rate, as well as improving the electronic structure to enhance its functional properties under visible light. One useful approach for achieving a suitable bandgap and improving electron"â€hole separation is combining or doping TiO2 with anionic and/or cationic species. In this study, Cu-doped TiO2 films were deposited via aerosol-assisted chemical vapour deposition (AACVD). The Cu-doped TiO2 films system in both phases (anatase and rutile) were specifically investigated for improved photocatalytic and antimicrobial properties of TiO2 under UVA compared with pure TiO2 thin films. Interactions between substitutional (replacing oxygen sites) and interstitial (sitting in the TiO2 lattice) Cu in the anatase lattice may also explain the enhancement in exciton lifetimes. A range of copper concentrations (2, 5, 10 and 20%) was investigated so that the photocatalytic and antibacterial abilities (vs. S. aureus and E. coli) could be determined. Effective dopant selection and concentration control is key to providing the maximum efficiency in terms of carrier lifetimes for migration to the surface for the necessary reactions to take place in photocatalysis and antibacterial activity. Interestingly, the AACVD system could be used to deposit TiO2 in rutile form on a thin layer of ZrO2 at 500°C. Cu-doped rutile"â€TiO2 films using a range of copper concentrations (2, 5, 10 and 20%) were investigated as well. The films showed surface plasmon resonance (SPR). In addition, these films exhibited enhanced photocatalytic activity under visible light irradiation, which could have been due to SPR. To the best of our knowledge, this is the first time that the brookite thin film form has been deposited by AACVD; in using AACVD to deposit the brookite TiO2 thin films, the band structure and photocatalytic properties were investigated. The brookite films grown by AACVD showed a direct bandgap of 3.4 eV. It was found that the photocatalytic properties of the brookite form, in comparison with degradation of stearic acid, were greater than the activity of anatase TiO2 thin films, as well as active glass. In addition, transient absorption spectroscopy (TAS) measurements showed that the hole"â€electron recombination dynamics are similar in both phases. The high surface area of the brookite form compared with the surface area of the anatase thin film could be the primary reason for the super-photocatalytic properties. Surprisingly, the brookite film exhibited superhydrophilic properties prior to any irradiation. The addition of Zn and nitrogen into the matrix of TiO2 films by AACVD was studied most extensively to improve the functional properties of TiO2 and achieve its activity under visible light. The oxygen atom in TiO2 lattice can be replaced by a nitrogen atom, which is called Ns (substitutional doping) in this case; alternatively, nitrogen atoms can be set in the TiO2 lattice, and this is called Ni (interstitial doping). These approaches create NHX and NOX surface species, which were observed using the X-ray photoelectron spectroscopy (XPS) results in this research. Transient absorption spectroscopy (TAS) was used to investigate the addition of (N + Zn) on the charge carrier dynamics of TiO2. Heterojunction systems of semiconductor materials are employed in different applications, such as water splitting, catalysis and electronic devices. These systems strengthen the synergistic effect, electron tunnelling and electron transfer, thereby leading to improved performance compared with the individual components. By using AACVD and APCVD processes with heterojunction systems, TiO2/Fe2O3 films were deposited, and different thicknesses of TiO2 were used on the Fe2O3 films. The resulting TiO2/Fe2O3 films exhibited enhanced performance in terms of the photocatalytic properties for the degradation of stearic acid under white light, as well as better photocurrent density and stability of the TiO2/α-Fe2O3 heterojunction. The TAS measurements showed the extent of its lifetime photogenerated charges.

Titanium Dioxide

Titanium Dioxide PDF Author: Hafiz Muhammad Ali
Publisher: BoD – Books on Demand
ISBN: 1839694750
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book presents a comprehensive overview of titanium dioxide, including recent advances and applications. It focuses on the compound’s uses in environmental remediation, photocatalytic materials, rechargeable lithium-ion batteries, thin films, energy storage, semiconductors, and much more. This volume is a useful resource for researchers, scientists, engineers, and students.

Photocatalytic Properties of Titanium Dioxide Nanoparticle Thin Films Prepared by Sparking Process

Photocatalytic Properties of Titanium Dioxide Nanoparticle Thin Films Prepared by Sparking Process PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Titanium Dioxide

Titanium Dioxide PDF Author: Magdalena Janus
Publisher: BoD – Books on Demand
ISBN: 9535134132
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
Titanium dioxide is mainly used as a pigment and photocatalyst. It is possible to find it in food, cosmetics, building materials, electric devices, and others. This book contains chapters about characteristics of anatase and rutile crystallographic structure of titanium dioxide and the use of theoretical calculation for photoactivity determination.

Titanium Dioxide Nanoparticles

Titanium Dioxide Nanoparticles PDF Author: Yucheng Lan
Publisher:
ISBN: 9781536110739
Category : Titanium dioxide crystals
Languages : en
Pages : 0

Get Book Here

Book Description
Over the past few decades, titanium dioxide has been an important material for different sectors of modern technology. More precisely, this ceramic has been synthesised in the form of nanomaterial and applied in buildings, dye-sensitised solar cells, hydrogen production, sensors, rechargeable batteries, electrocatalysis, self-cleaning, environmental pollution, and antibacterial actions based on its enhanced optical properties. This book describes preparation, photocatalytic properties, and applications of nanostructured titanium dioxide with a particular focus on non-traditional syntheses and brookite. Titanium oxide nanoparticles are produced by hydrothermal processes, ionic liquid-assisted reactions, biological approaches, ball-milling techniques, etc. Physical properties and potential future applications of the produced nanostructured titanium dioxide nanoparticles are reviewed. Toxicity of titanium oxide nanoparticles and titanium oxide nanowires are also discussed.