Author: Akira Onuki
Publisher: Cambridge University Press
ISBN: 1139433164
Category : Science
Languages : en
Pages : 726
Book Description
Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.
Phase Transition Dynamics
Author: Akira Onuki
Publisher: Cambridge University Press
ISBN: 1139433164
Category : Science
Languages : en
Pages : 726
Book Description
Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.
Publisher: Cambridge University Press
ISBN: 1139433164
Category : Science
Languages : en
Pages : 726
Book Description
Phase Transition Dynamics, first published in 2002, provides a fully comprehensive treatment of the study of phase transitions. Building on the statistical mechanics of phase transitions, covered in many introductory textbooks, it will be essential reading for researchers and advanced graduate students in physics, chemistry, metallurgy and polymer science.
Phase Transition Dynamics
Author: Tian Ma
Publisher: Springer Science & Business Media
ISBN: 1461489636
Category : Mathematics
Languages : en
Pages : 575
Book Description
This book is an introduction to a comprehensive and unified dynamic transition theory for dissipative systems and to applications of the theory to a range of problems in the nonlinear sciences. The main objectives of this book are to introduce a general principle of dynamic transitions for dissipative systems, to establish a systematic dynamic transition theory, and to explore the physical implications of applications of the theory to a range of problems in the nonlinear sciences. The basic philosophy of the theory is to search for a complete set of transition states, and the general principle states that dynamic transitions of all dissipative systems can be classified into three categories: continuous, catastrophic and random. The audience for this book includes advanced graduate students and researchers in mathematics and physics as well as in other related fields.
Publisher: Springer Science & Business Media
ISBN: 1461489636
Category : Mathematics
Languages : en
Pages : 575
Book Description
This book is an introduction to a comprehensive and unified dynamic transition theory for dissipative systems and to applications of the theory to a range of problems in the nonlinear sciences. The main objectives of this book are to introduce a general principle of dynamic transitions for dissipative systems, to establish a systematic dynamic transition theory, and to explore the physical implications of applications of the theory to a range of problems in the nonlinear sciences. The basic philosophy of the theory is to search for a complete set of transition states, and the general principle states that dynamic transitions of all dissipative systems can be classified into three categories: continuous, catastrophic and random. The audience for this book includes advanced graduate students and researchers in mathematics and physics as well as in other related fields.
Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions
Author: Yuriy M. Bunkov
Publisher: Springer Science & Business Media
ISBN: 9780792362050
Category : Science
Languages : en
Pages : 70
Book Description
Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.
Publisher: Springer Science & Business Media
ISBN: 9780792362050
Category : Science
Languages : en
Pages : 70
Book Description
Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.
Quantum Phase Transitions
Author: Subir Sachdev
Publisher: Cambridge University Press
ISBN: 113950021X
Category : Science
Languages : en
Pages : 521
Book Description
Describing the physical properties of quantum materials near critical points with long-range many-body quantum entanglement, this book introduces readers to the basic theory of quantum phases, their phase transitions and their observable properties. This second edition begins with a new section suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. It also contains several new chapters to cover important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at non-zero temperatures. Finally, a variety of more complex models are explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.
Publisher: Cambridge University Press
ISBN: 113950021X
Category : Science
Languages : en
Pages : 521
Book Description
Describing the physical properties of quantum materials near critical points with long-range many-body quantum entanglement, this book introduces readers to the basic theory of quantum phases, their phase transitions and their observable properties. This second edition begins with a new section suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. It also contains several new chapters to cover important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at non-zero temperatures. Finally, a variety of more complex models are explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.
Phase Transitions in Materials
Author: Brent Fultz
Publisher: Cambridge University Press
ISBN: 1107067243
Category : Science
Languages : en
Pages : 589
Book Description
A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.
Publisher: Cambridge University Press
ISBN: 1107067243
Category : Science
Languages : en
Pages : 589
Book Description
A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.
The Physics of Phase Transitions
Author: Pierre Papon
Publisher: Springer Science & Business Media
ISBN: 3662049899
Category : Science
Languages : en
Pages : 410
Book Description
The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.
Publisher: Springer Science & Business Media
ISBN: 3662049899
Category : Science
Languages : en
Pages : 410
Book Description
The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.
Quantum Phase Transitions in Transverse Field Models
Author: Amit Dutta
Publisher: Cambridge University Press
ISBN: 1107068797
Category : Science
Languages : en
Pages : 357
Book Description
This book establishes the fundamental connections between the physics of quantum phase transitions and the technological promise of quantum information.
Publisher: Cambridge University Press
ISBN: 1107068797
Category : Science
Languages : en
Pages : 357
Book Description
This book establishes the fundamental connections between the physics of quantum phase transitions and the technological promise of quantum information.
Nonequilibrium Phase Transitions in Lattice Models
Author: Joaquin Marro
Publisher: Cambridge University Press
ISBN: 9780521019460
Category : Science
Languages : en
Pages : 344
Book Description
This book provides an introduction to nonequilibrium statistical physics via lattice models. Beginning with an introduction to the basic driven lattice gas, the early chapters discuss the relevance of this lattice model to certain natural phenomena, examining simulation results in detail. Later chapters discuss absorbing-state transitions, and examine a variety of systems subject to dynamic disorder. The book discusses the effects of multiparticle rules, nonunique absorbing-states and conservation laws, as well as the use of methods such as mean-field theory, Monte Carlo simulation and the concept of universality. It also includes detailed references and examples using simple respresentations of nature to describe real systems.
Publisher: Cambridge University Press
ISBN: 9780521019460
Category : Science
Languages : en
Pages : 344
Book Description
This book provides an introduction to nonequilibrium statistical physics via lattice models. Beginning with an introduction to the basic driven lattice gas, the early chapters discuss the relevance of this lattice model to certain natural phenomena, examining simulation results in detail. Later chapters discuss absorbing-state transitions, and examine a variety of systems subject to dynamic disorder. The book discusses the effects of multiparticle rules, nonunique absorbing-states and conservation laws, as well as the use of methods such as mean-field theory, Monte Carlo simulation and the concept of universality. It also includes detailed references and examples using simple respresentations of nature to describe real systems.
Evolution of Phase Transitions
Author: Rohan Abeyaratne
Publisher: Cambridge University Press
ISBN: 9781139449243
Category : Science
Languages : en
Pages : 272
Book Description
This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory.
Publisher: Cambridge University Press
ISBN: 9781139449243
Category : Science
Languages : en
Pages : 272
Book Description
This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory.
Phase Transitions
Author: Ricard Solé
Publisher: Princeton University Press
ISBN: 1400838924
Category : Science
Languages : en
Pages : 237
Book Description
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of life, viral replication, epidemics, language evolution, and the emergence and breakdown of societies. Written at an undergraduate mathematical level, this book provides the essential theoretical tools and foundations required to develop basic models to explain collective phase transitions for a wide variety of ecosystems.
Publisher: Princeton University Press
ISBN: 1400838924
Category : Science
Languages : en
Pages : 237
Book Description
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of life, viral replication, epidemics, language evolution, and the emergence and breakdown of societies. Written at an undergraduate mathematical level, this book provides the essential theoretical tools and foundations required to develop basic models to explain collective phase transitions for a wide variety of ecosystems.