Phase-field Modeling of Multi-field Problems with Applications to Hydraulic-elastic-plastic Fracturing

Phase-field Modeling of Multi-field Problems with Applications to Hydraulic-elastic-plastic Fracturing PDF Author: Daniel Kienle
Publisher:
ISBN: 9783937399591
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Phase-field Modeling of Multi-field Problems with Applications to Hydraulic-elastic-plastic Fracturing

Phase-field Modeling of Multi-field Problems with Applications to Hydraulic-elastic-plastic Fracturing PDF Author: Daniel Kienle
Publisher:
ISBN: 9783937399591
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


The Variational Approach to Fracture

The Variational Approach to Fracture PDF Author: Blaise Bourdin
Publisher: Springer Science & Business Media
ISBN: 1402063954
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.

Multiphysics Phase-Field Fracture

Multiphysics Phase-Field Fracture PDF Author: Thomas Wick
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110497395
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.

Applications of Phase-field Modeling in Hydraulic Fracture

Applications of Phase-field Modeling in Hydraulic Fracture PDF Author: Talal Eid Alotaibi
Publisher:
ISBN:
Category :
Languages : en
Pages : 354

Get Book Here

Book Description
Understanding the mechanisms behind the nucleation and propagation of cracks is of considerable interest in engineering application and design decisions. In many applications in the oil industry, complicated fracture geometries and propagation behaviors are encountered. As a result, the development of modeling approaches that can capture the physics of non-planar crack evolution while being computationally tractable is a critical challenge. The phase-field approach to fracture has been shown to be a powerful tool for simulating very complex fracture topologies, including the turning, splitting, and merging of cracks. In contrast to fracture models that explicitly track the crack surfaces, crack propagation and the evolution thereof arise out of the solution to a partial differential equation governing the evolution of a phase-field damage parameter. As such, the crack growth emerges naturally from solving the set of coupled differential equations linking the phase-field to other field quantities that can drive the fracture process. In the present model, the physics of flow through porous media and cracks is coupled with the mechanics of fracture. Darcy-type flow is modeled in the intact porous medium, which transitions to a Stokes-type flow regime within open cracks. This phase-field model is implemented to gain insights into the propagation behavior of fluid-injected cracks. One outstanding issue with phase-field fracture models is the decomposition of the strain energy required to ensure that compressive stress states do not cause crack propagation and damage evolution. In the present study, the proper representation of the strain energy function to reflect this fracture phenomenon is examined. The strain energy is constructed in terms of principle strains in such a way that it has two parts; the tensile and the compressive. A degradation function only applies to the tensile part enforcing that the crack is driven only by that part of the strain energy. We investigated the split operator proposed by Miehe et al. [1], and then proposed a split approach based on masonry-like material behavior [2, 3]. We have found that when using Miehe's form for the strain energy function, cracks can propagate under compressive stresses. In contrast, the approach based on a masonry-like materials constitutive model we proposed ensures that cracks do not grow under compressive stresses. To demonstrate the capabilities of phase-field modeling for fluid-driven fractures, four general types of problems are simulated: 1) interactions of fluid-driven, natural, and proppant-filled cracks, 2) crack growth through different material layers, 3) fluid-driven crack growth under the influence of in-situ far-field stresses, and 4) crack interactions with inclusions. The simulations illustrate the capabilities of the phase-field model for capturing interesting and complex crack growth phenomena. To understand how fluid-driven cracks interact with inclusions, AlTammar et al. [4] performed experiments. Three tests with tough inclusions were performed to understand the effects of orientation angle, thickness, and material properties. Additionally, one test with a weak inclusion was performed to compare the results with those of the tough inclusion cases. The experiments show a clear tendency for the fluid-driven hydraulic fracture to cross thick natural fractures filled with materials weaker and softer than the matrix and to be diverted by thick natural fractures with tougher and stiffer filling materials. To replicate these experiments numerically and to gain a mechanistic understanding, in the present study, we ran simulations using phase-field modeling. Results from both the experiments and the simulations provide clear evidence that inclusion width, angle, material properties, and distance from the injection point affect the outcome of the crack evolution. Phase-field modeling was able to capture the trends of crack deflection/crossing in all the test cases. Finally, we extended the phase-field model has been extended to three dimensions and tested it on bench-mark problems. The first bench-mark problem is a compact test for a CT specimen. In this problem, the mechanical equations are only considered. The simulation shows that the CT specimen is split into two symmetric parts. The second bench-mark problem is a fluid-driven circular crack. The simulation for this problem shows that the crack grows in a radial direction

Approximation of Free-Discontinuity Problems

Approximation of Free-Discontinuity Problems PDF Author: Andrea Braides
Publisher: Springer Science & Business Media
ISBN: 9783540647713
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.

Phase-Field Methods in Materials Science and Engineering

Phase-Field Methods in Materials Science and Engineering PDF Author: Nikolas Provatas
Publisher: John Wiley & Sons
ISBN: 3527632379
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
This comprehensive and self-contained, one-stop source discusses phase-field methodology in a fundamental way, explaining advanced numerical techniques for solving phase-field and related continuum-field models. It also presents numerical techniques used to simulate various phenomena in a detailed, step-by-step way, such that readers can carry out their own code developments. Features many examples of how the methods explained can be used in materials science and engineering applications.

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids PDF Author: Laura De Lorenzis
Publisher: Springer Nature
ISBN: 3030375188
Category : Science
Languages : en
Pages : 225

Get Book Here

Book Description
The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Author: Xinpu Shen
Publisher: CRC Press
ISBN: 1351796291
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Phase‐Field Modeling of Hydraulic Fracture

Phase‐Field Modeling of Hydraulic Fracture PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Extended Finite Element Method

Extended Finite Element Method PDF Author: Amir R. Khoei
Publisher: John Wiley & Sons
ISBN: 1118457684
Category : Science
Languages : en
Pages : 600

Get Book Here

Book Description
Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples