Author: A. E. Ringwood
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 648
Book Description
Composition and Petrology of the Earth's Mantle
Author: A. E. Ringwood
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 648
Book Description
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 648
Book Description
The Earth's Crust and Upper Mantle
Author: Pembroke J. Hart
Publisher: American Geophysical Union
ISBN: 0875900135
Category : Science
Languages : en
Pages : 801
Book Description
Publisher: American Geophysical Union
ISBN: 0875900135
Category : Science
Languages : en
Pages : 801
Book Description
Ocean Island Volcanoes: Genesis, Evolution and Impact
Author: Adriano Pimentel
Publisher: Frontiers Media SA
ISBN: 288963728X
Category :
Languages : en
Pages : 180
Book Description
Ocean island volcanoes constitute some of the most prominent and rapidly-formed features on Earth, and yet they cannot be explained by conventional plate tectonics. Although typically associated with intraplate settings (hotspots), these volcanoes also occur in different geodynamic settings (near mid-ocean ridges). The nature of ocean island magmatism is still the subject of intense debate within the geological community. Traditionally it has been linked to the presence of mantle plumes at depth (e.g. Hawaii), although the interaction with plate tectonics is also recognized to play a significant role (e.g. Azores, Galápagos). Magma compositions may range from basaltic to more differentiated, which consequently is accompanied by striking changes in the eruption style from effusive-dominated to highly explosive volcanism. Understanding how these magmas evolve and how volcanic processes act at ocean island volcanoes are key issues of modern volcanology. Moreover, the growth of ocean island volcanoes from their rise on the seafloor as seamounts, to island emergence and subsequent formation of shield volcanoes (and in some cases large caldera volcanoes) is governed by multiple interrelated changes. It is well known that competing processes model ocean island volcanoes during alternating and/or coeval periods of construction and destruction. The geological evolution of these volcanoes results from the balance among volcanism, intrusions, tectonics, subsidence/uplift, mass wasting, sedimentation, and subaerial and wave erosion. A better knowledge of the interplay between these processes is crucial to obtain a more comprehensive understanding of the evolution of such volcanoes, and to the eventual formulation of a unified model for ocean island evolution. Ocean islands are especially vulnerable to volcanic eruptions and other geological hazards on account of their typical small size, rough topography and isolation, which make risk management and evacuation difficult. Volcanic eruptions, in particular, may have a significant impact on local populations, infrastructures, economy and even on the global climate. It is therefore fundamental to monitor these volcanoes with complementary geophysical, geodetic and geochemical techniques in order to forecast future eruptions and their impacts. However, the assessment of volcanic hazards on ocean islands is challenging due to the large variety of phenomena involved (e.g. lava flows, tephra fallout, pyroclastic density currents, lahars, gas emissions). Different approaches are used to assess volcanic hazards, either based on empirical methods or sophisticated numerical models, focusing on a single phenomenon or the combination of different hazards. This Frontiers Research Topic aims to promote discussion within the scientific community, representing an important step forward in our knowledge of ocean island volcanoes in order to serve as a reference for future research.
Publisher: Frontiers Media SA
ISBN: 288963728X
Category :
Languages : en
Pages : 180
Book Description
Ocean island volcanoes constitute some of the most prominent and rapidly-formed features on Earth, and yet they cannot be explained by conventional plate tectonics. Although typically associated with intraplate settings (hotspots), these volcanoes also occur in different geodynamic settings (near mid-ocean ridges). The nature of ocean island magmatism is still the subject of intense debate within the geological community. Traditionally it has been linked to the presence of mantle plumes at depth (e.g. Hawaii), although the interaction with plate tectonics is also recognized to play a significant role (e.g. Azores, Galápagos). Magma compositions may range from basaltic to more differentiated, which consequently is accompanied by striking changes in the eruption style from effusive-dominated to highly explosive volcanism. Understanding how these magmas evolve and how volcanic processes act at ocean island volcanoes are key issues of modern volcanology. Moreover, the growth of ocean island volcanoes from their rise on the seafloor as seamounts, to island emergence and subsequent formation of shield volcanoes (and in some cases large caldera volcanoes) is governed by multiple interrelated changes. It is well known that competing processes model ocean island volcanoes during alternating and/or coeval periods of construction and destruction. The geological evolution of these volcanoes results from the balance among volcanism, intrusions, tectonics, subsidence/uplift, mass wasting, sedimentation, and subaerial and wave erosion. A better knowledge of the interplay between these processes is crucial to obtain a more comprehensive understanding of the evolution of such volcanoes, and to the eventual formulation of a unified model for ocean island evolution. Ocean islands are especially vulnerable to volcanic eruptions and other geological hazards on account of their typical small size, rough topography and isolation, which make risk management and evacuation difficult. Volcanic eruptions, in particular, may have a significant impact on local populations, infrastructures, economy and even on the global climate. It is therefore fundamental to monitor these volcanoes with complementary geophysical, geodetic and geochemical techniques in order to forecast future eruptions and their impacts. However, the assessment of volcanic hazards on ocean islands is challenging due to the large variety of phenomena involved (e.g. lava flows, tephra fallout, pyroclastic density currents, lahars, gas emissions). Different approaches are used to assess volcanic hazards, either based on empirical methods or sophisticated numerical models, focusing on a single phenomenon or the combination of different hazards. This Frontiers Research Topic aims to promote discussion within the scientific community, representing an important step forward in our knowledge of ocean island volcanoes in order to serve as a reference for future research.
Mantle Xenoliths
Author: Peter H. Nixon
Publisher: John Wiley & Sons
ISBN:
Category : Nature
Languages : en
Pages : 892
Book Description
The eruption of deep-seated xenoliths in basaltic, alnoitic, kimberlitic, etc volcanoes provides the geologist with an important direct means of examining the fragments of the earth's mantle and lower crust.
Publisher: John Wiley & Sons
ISBN:
Category : Nature
Languages : en
Pages : 892
Book Description
The eruption of deep-seated xenoliths in basaltic, alnoitic, kimberlitic, etc volcanoes provides the geologist with an important direct means of examining the fragments of the earth's mantle and lower crust.
Theory of the Earth
Author: Don L. Anderson
Publisher: Wiley-Blackwell
ISBN: 9780865421233
Category : Science
Languages : en
Pages : 366
Book Description
Theory of the Earth is a combination reference and textbook that every exploration geologist and research scientist should have on his/her bookshelf. It is also suitable for advanced undergraduate, as well as graduate level geophysics courses. The emphasis is on the origin, evolution, structure and composition of the earth′s interior. It treats the pertinent aspects of solid state physics, thermodynamics, geochemistry, petrology, and seismology in sufficient detail for all who seek current information on geochemistry, solid state physics, and physics of the earth or planets
Publisher: Wiley-Blackwell
ISBN: 9780865421233
Category : Science
Languages : en
Pages : 366
Book Description
Theory of the Earth is a combination reference and textbook that every exploration geologist and research scientist should have on his/her bookshelf. It is also suitable for advanced undergraduate, as well as graduate level geophysics courses. The emphasis is on the origin, evolution, structure and composition of the earth′s interior. It treats the pertinent aspects of solid state physics, thermodynamics, geochemistry, petrology, and seismology in sufficient detail for all who seek current information on geochemistry, solid state physics, and physics of the earth or planets
Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up
Author: J.L. Smellie
Publisher: Geological Society of London
ISBN: 178620536X
Category : Science
Languages : en
Pages : 802
Book Description
This memoir is the first to review all of Antarctica’s volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world’s major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).
Publisher: Geological Society of London
ISBN: 178620536X
Category : Science
Languages : en
Pages : 802
Book Description
This memoir is the first to review all of Antarctica’s volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world’s major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).
The Encyclopedia of Mineralogy
Author: Keith Frye
Publisher: Springer Science & Business Media
ISBN: 0879331844
Category : Science
Languages : en
Pages : 532
Book Description
The Encyclopedia of Mineralogy provides comprehensive, basic treatment of the science of mineralogy. More than 140 articles by internationally known scholars and research workers describe specific areas of mineralogical interest, and a glossary of 3000 entries defines all valid mineral species and many related mineral names. In addition to traditional topics - descriptions of major structural groups, methods of mineral analysis, and the paragenesis of mineral species - this volume embraces such subjects as asbestiform minerals, minerals found in caves and in living beings, and gems and gemology. It includes current data on the latest in our geological inventories - lunar minerals. It describes the properties, characteristics, and uses of industrial resources such as abrasive materials and Portland cement. A directory will guide traveling mineralogists to the major mineralogical museums of the world, with their special interests noted. Clear technical illustrations supplement the text throughout. To help the student and professional find particular information there are a comprehensive subject index, extensive cross-references of related topics (whether in this volume or others in the series), and reference lists to background information and detailed advanced treatment of all topics. The Encyclopedia of Mineralogy is a valuable reference and source for professionals in all geological sciences, for science teachers at all levels, for collectors and `rock hounds', and for all who are curious about the minerals on earth or those brought back from outer space.
Publisher: Springer Science & Business Media
ISBN: 0879331844
Category : Science
Languages : en
Pages : 532
Book Description
The Encyclopedia of Mineralogy provides comprehensive, basic treatment of the science of mineralogy. More than 140 articles by internationally known scholars and research workers describe specific areas of mineralogical interest, and a glossary of 3000 entries defines all valid mineral species and many related mineral names. In addition to traditional topics - descriptions of major structural groups, methods of mineral analysis, and the paragenesis of mineral species - this volume embraces such subjects as asbestiform minerals, minerals found in caves and in living beings, and gems and gemology. It includes current data on the latest in our geological inventories - lunar minerals. It describes the properties, characteristics, and uses of industrial resources such as abrasive materials and Portland cement. A directory will guide traveling mineralogists to the major mineralogical museums of the world, with their special interests noted. Clear technical illustrations supplement the text throughout. To help the student and professional find particular information there are a comprehensive subject index, extensive cross-references of related topics (whether in this volume or others in the series), and reference lists to background information and detailed advanced treatment of all topics. The Encyclopedia of Mineralogy is a valuable reference and source for professionals in all geological sciences, for science teachers at all levels, for collectors and `rock hounds', and for all who are curious about the minerals on earth or those brought back from outer space.
The Encyclopedia of Igneous and Metamorphic Petrology
Author: Donald Bowes
Publisher: Springer Science & Business Media
ISBN: 0442206232
Category : Science
Languages : en
Pages : 635
Book Description
Featuring over 250 contributions from more than 100 earth scientists from 18 countries, The Encyclopedia of Igneous and Metamorphic Petrology deals with the nature and genesis of igneous rocks that have crystallized from molten magma, and of metamorphic rocks that are the products of re-crystallization associated with increases in temperature and pressure, mainly at considerable depths in the Earth's crust. Entries range from alkaline rocks to zeolite facies - providing information on the mineralogical, chemical and textural characters of rock types, the development of concepts and the present state of knowledge across the spectrum of igneous and metamorphic petrology, together with extensive lists of both commonly used and little used terms and bibliographies.
Publisher: Springer Science & Business Media
ISBN: 0442206232
Category : Science
Languages : en
Pages : 635
Book Description
Featuring over 250 contributions from more than 100 earth scientists from 18 countries, The Encyclopedia of Igneous and Metamorphic Petrology deals with the nature and genesis of igneous rocks that have crystallized from molten magma, and of metamorphic rocks that are the products of re-crystallization associated with increases in temperature and pressure, mainly at considerable depths in the Earth's crust. Entries range from alkaline rocks to zeolite facies - providing information on the mineralogical, chemical and textural characters of rock types, the development of concepts and the present state of knowledge across the spectrum of igneous and metamorphic petrology, together with extensive lists of both commonly used and little used terms and bibliographies.
Studies in Volcanology
Author: Howel Williams
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 786
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 786
Book Description
Crust-Mantle and Lithosphere-Asthenosphere Boundaries
Author: Gianluca Bianchini
Publisher: Geological Society of America
ISBN: 0813725267
Category : Science
Languages : en
Pages : 226
Book Description
This 10-chapter volume encompasses contributions from a wide spectrum of Earth science disciplines, including geophysics, geodynamics, geochemistry, and petrology, to provide an overview of the nature and evolution of the crust-mantle and lithosphere-asthenosphere boundaries in different tectonic settings, combining studies that exploit different types of data and interpretative approaches. The integration of geochemical, geophysical, and geodynamic data sets and their interpretation provides a state-of-the-art summary of current understanding, and will serve as a blueprint for future research activities.
Publisher: Geological Society of America
ISBN: 0813725267
Category : Science
Languages : en
Pages : 226
Book Description
This 10-chapter volume encompasses contributions from a wide spectrum of Earth science disciplines, including geophysics, geodynamics, geochemistry, and petrology, to provide an overview of the nature and evolution of the crust-mantle and lithosphere-asthenosphere boundaries in different tectonic settings, combining studies that exploit different types of data and interpretative approaches. The integration of geochemical, geophysical, and geodynamic data sets and their interpretation provides a state-of-the-art summary of current understanding, and will serve as a blueprint for future research activities.