Author: Kenneth J. Berry
Publisher: Springer
ISBN: 3319287702
Category : Mathematics
Languages : en
Pages : 634
Book Description
This research monograph provides a synthesis of a number of statistical tests and measures, which, at first consideration, appear disjoint and unrelated. Numerous comparisons of permutation and classical statistical methods are presented, and the two methods are compared via probability values and, where appropriate, measures of effect size. Permutation statistical methods, compared to classical statistical methods, do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This text takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field in statistics. This topic is new in that it took modern computing power to make permutation methods available to people working in the mainstream of research. lly-informed="" audience,="" and="" can="" also="" easily="" serve="" as="" textbook="" in="" graduate="" course="" departments="" such="" statistics,="" psychology,="" or="" biology.="" particular,="" the="" audience="" for="" book="" is="" teachers="" of="" practicing="" statisticians,="" applied="" quantitative="" students="" fields="" medical="" research,="" epidemiology,="" public="" health,="" biology.
Permutation Statistical Methods
Author: Kenneth J. Berry
Publisher: Springer
ISBN: 3319287702
Category : Mathematics
Languages : en
Pages : 634
Book Description
This research monograph provides a synthesis of a number of statistical tests and measures, which, at first consideration, appear disjoint and unrelated. Numerous comparisons of permutation and classical statistical methods are presented, and the two methods are compared via probability values and, where appropriate, measures of effect size. Permutation statistical methods, compared to classical statistical methods, do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This text takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field in statistics. This topic is new in that it took modern computing power to make permutation methods available to people working in the mainstream of research. lly-informed="" audience,="" and="" can="" also="" easily="" serve="" as="" textbook="" in="" graduate="" course="" departments="" such="" statistics,="" psychology,="" or="" biology.="" particular,="" the="" audience="" for="" book="" is="" teachers="" of="" practicing="" statisticians,="" applied="" quantitative="" students="" fields="" medical="" research,="" epidemiology,="" public="" health,="" biology.
Publisher: Springer
ISBN: 3319287702
Category : Mathematics
Languages : en
Pages : 634
Book Description
This research monograph provides a synthesis of a number of statistical tests and measures, which, at first consideration, appear disjoint and unrelated. Numerous comparisons of permutation and classical statistical methods are presented, and the two methods are compared via probability values and, where appropriate, measures of effect size. Permutation statistical methods, compared to classical statistical methods, do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This text takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field in statistics. This topic is new in that it took modern computing power to make permutation methods available to people working in the mainstream of research. lly-informed="" audience,="" and="" can="" also="" easily="" serve="" as="" textbook="" in="" graduate="" course="" departments="" such="" statistics,="" psychology,="" or="" biology.="" particular,="" the="" audience="" for="" book="" is="" teachers="" of="" practicing="" statisticians,="" applied="" quantitative="" students="" fields="" medical="" research,="" epidemiology,="" public="" health,="" biology.
Permutation Tests
Author: Phillip Good
Publisher: Springer Science & Business Media
ISBN: 1475723466
Category : Mathematics
Languages : en
Pages : 238
Book Description
A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.
Publisher: Springer Science & Business Media
ISBN: 1475723466
Category : Mathematics
Languages : en
Pages : 238
Book Description
A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.
Permutation Statistical Methods with R
Author: Kenneth J. Berry
Publisher: Springer Nature
ISBN: 3030743616
Category : Mathematics
Languages : en
Pages : 677
Book Description
This book takes a unique approach to explaining permutation statistics by integrating permutation statistical methods with a wide range of classical statistical methods and associated R programs. It opens by comparing and contrasting two models of statistical inference: the classical population model espoused by J. Neyman and E.S. Pearson and the permutation model first introduced by R.A. Fisher and E.J.G. Pitman. Numerous comparisons of permutation and classical statistical methods are presented, supplemented with a variety of R scripts for ease of computation. The text follows the general outline of an introductory textbook in statistics with chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, completely-randomized analysis of variance, randomized-blocks analysis of variance, simple linear regression and correlation, and the analysis of goodness of fit and contingency. Unlike classical statistical methods, permutation statistical methods do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity, depend only on the observed data, and do not require random sampling. The methods are relatively new in that it took modern computing power to make them available to those working in mainstream research. Designed for an audience with a limited statistical background, the book can easily serve as a textbook for undergraduate or graduate courses in statistics, psychology, economics, political science or biology. No statistical training beyond a first course in statistics is required, but some knowledge of, or some interest in, the R programming language is assumed.
Publisher: Springer Nature
ISBN: 3030743616
Category : Mathematics
Languages : en
Pages : 677
Book Description
This book takes a unique approach to explaining permutation statistics by integrating permutation statistical methods with a wide range of classical statistical methods and associated R programs. It opens by comparing and contrasting two models of statistical inference: the classical population model espoused by J. Neyman and E.S. Pearson and the permutation model first introduced by R.A. Fisher and E.J.G. Pitman. Numerous comparisons of permutation and classical statistical methods are presented, supplemented with a variety of R scripts for ease of computation. The text follows the general outline of an introductory textbook in statistics with chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, completely-randomized analysis of variance, randomized-blocks analysis of variance, simple linear regression and correlation, and the analysis of goodness of fit and contingency. Unlike classical statistical methods, permutation statistical methods do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity, depend only on the observed data, and do not require random sampling. The methods are relatively new in that it took modern computing power to make them available to those working in mainstream research. Designed for an audience with a limited statistical background, the book can easily serve as a textbook for undergraduate or graduate courses in statistics, psychology, economics, political science or biology. No statistical training beyond a first course in statistics is required, but some knowledge of, or some interest in, the R programming language is assumed.
A Chronicle of Permutation Statistical Methods
Author: Kenneth J. Berry
Publisher: Springer Science & Business Media
ISBN: 3319027441
Category : Mathematics
Languages : en
Pages : 535
Book Description
The focus of this book is on the birth and historical development of permutation statistical methods from the early 1920s to the near present. Beginning with the seminal contributions of R.A. Fisher, E.J.G. Pitman, and others in the 1920s and 1930s, permutation statistical methods were initially introduced to validate the assumptions of classical statistical methods. Permutation methods have advantages over classical methods in that they are optimal for small data sets and non-random samples, are data-dependent, and are free of distributional assumptions. Permutation probability values may be exact, or estimated via moment- or resampling-approximation procedures. Because permutation methods are inherently computationally-intensive, the evolution of computers and computing technology that made modern permutation methods possible accompanies the historical narrative. Permutation analogs of many well-known statistical tests are presented in a historical context, including multiple correlation and regression, analysis of variance, contingency table analysis, and measures of association and agreement. A non-mathematical approach makes the text accessible to readers of all levels.
Publisher: Springer Science & Business Media
ISBN: 3319027441
Category : Mathematics
Languages : en
Pages : 535
Book Description
The focus of this book is on the birth and historical development of permutation statistical methods from the early 1920s to the near present. Beginning with the seminal contributions of R.A. Fisher, E.J.G. Pitman, and others in the 1920s and 1930s, permutation statistical methods were initially introduced to validate the assumptions of classical statistical methods. Permutation methods have advantages over classical methods in that they are optimal for small data sets and non-random samples, are data-dependent, and are free of distributional assumptions. Permutation probability values may be exact, or estimated via moment- or resampling-approximation procedures. Because permutation methods are inherently computationally-intensive, the evolution of computers and computing technology that made modern permutation methods possible accompanies the historical narrative. Permutation analogs of many well-known statistical tests are presented in a historical context, including multiple correlation and regression, analysis of variance, contingency table analysis, and measures of association and agreement. A non-mathematical approach makes the text accessible to readers of all levels.
Permutation Methods
Author: Paul W. Mielke
Publisher: Springer Science & Business Media
ISBN: 0387698132
Category : Mathematics
Languages : en
Pages : 449
Book Description
This is the second edition of the comprehensive treatment of statistical inference using permutation techniques. It makes available to practitioners a variety of useful and powerful data analytic tools that rely on very few distributional assumptions. Although many of these procedures have appeared in journal articles, they are not readily available to practitioners. This new and updated edition places increased emphasis on the use of alternative permutation statistical tests based on metric Euclidean distance functions that have excellent robustness characteristics. These alternative permutation techniques provide many powerful multivariate tests including multivariate multiple regression analyses.
Publisher: Springer Science & Business Media
ISBN: 0387698132
Category : Mathematics
Languages : en
Pages : 449
Book Description
This is the second edition of the comprehensive treatment of statistical inference using permutation techniques. It makes available to practitioners a variety of useful and powerful data analytic tools that rely on very few distributional assumptions. Although many of these procedures have appeared in journal articles, they are not readily available to practitioners. This new and updated edition places increased emphasis on the use of alternative permutation statistical tests based on metric Euclidean distance functions that have excellent robustness characteristics. These alternative permutation techniques provide many powerful multivariate tests including multivariate multiple regression analyses.
The Measurement of Association
Author: Kenneth J. Berry
Publisher: Springer
ISBN: 331998926X
Category : Mathematics
Languages : en
Pages : 661
Book Description
This research monograph utilizes exact and Monte Carlo permutation statistical methods to generate probability values and measures of effect size for a variety of measures of association. Association is broadly defined to include measures of correlation for two interval-level variables, measures of association for two nominal-level variables or two ordinal-level variables, and measures of agreement for two nominal-level or two ordinal-level variables. Additionally, measures of association for mixtures of the three levels of measurement are considered: nominal-ordinal, nominal-interval, and ordinal-interval measures. Numerous comparisons of permutation and classical statistical methods are presented. Unlike classical statistical methods, permutation statistical methods do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This book takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field. This topic is relatively new in that it took modern computing power to make permutation methods available to those working in mainstream research. Written for a statistically informed audience, it is particularly useful for teachers of statistics, practicing statisticians, applied statisticians, and quantitative graduate students in fields such as psychology, medical research, epidemiology, public health, and biology. It can also serve as a textbook in graduate courses in subjects like statistics, psychology, and biology.
Publisher: Springer
ISBN: 331998926X
Category : Mathematics
Languages : en
Pages : 661
Book Description
This research monograph utilizes exact and Monte Carlo permutation statistical methods to generate probability values and measures of effect size for a variety of measures of association. Association is broadly defined to include measures of correlation for two interval-level variables, measures of association for two nominal-level variables or two ordinal-level variables, and measures of agreement for two nominal-level or two ordinal-level variables. Additionally, measures of association for mixtures of the three levels of measurement are considered: nominal-ordinal, nominal-interval, and ordinal-interval measures. Numerous comparisons of permutation and classical statistical methods are presented. Unlike classical statistical methods, permutation statistical methods do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This book takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field. This topic is relatively new in that it took modern computing power to make permutation methods available to those working in mainstream research. Written for a statistically informed audience, it is particularly useful for teachers of statistics, practicing statisticians, applied statisticians, and quantitative graduate students in fields such as psychology, medical research, epidemiology, public health, and biology. It can also serve as a textbook in graduate courses in subjects like statistics, psychology, and biology.
Permutation Tests for Complex Data
Author: Fortunato Pesarin
Publisher: John Wiley & Sons
ISBN: 9780470689523
Category : Mathematics
Languages : en
Pages : 448
Book Description
Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies. The Authors give a general overview on permutation tests with a focus on recent theoretical advances within univariate and multivariate complex permutation testing problems, this book brings the reader completely up to date with today’s current thinking. Key Features: Examines the most up-to-date methodologies of univariate and multivariate permutation testing. Includes extensive software codes in MATLAB, R and SAS, featuring worked examples, and uses real case studies from both experimental and observational studies. Includes a standalone free software NPC Test Release 10 with a graphical interface which allows practitioners from every scientific field to easily implement almost all complex testing procedures included in the book. Presents and discusses solutions to the most important and frequently encountered real problems in multivariate analyses. A supplementary website containing all of the data sets examined in the book along with ready to use software codes. Together with a wide set of application cases, the Authors present a thorough theory of permutation testing both with formal description and proofs, and analysing real case studies. Practitioners and researchers, working in different scientific fields such as engineering, biostatistics, psychology or medicine will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 9780470689523
Category : Mathematics
Languages : en
Pages : 448
Book Description
Complex multivariate testing problems are frequently encountered in many scientific disciplines, such as engineering, medicine and the social sciences. As a result, modern statistics needs permutation testing for complex data with low sample size and many variables, especially in observational studies. The Authors give a general overview on permutation tests with a focus on recent theoretical advances within univariate and multivariate complex permutation testing problems, this book brings the reader completely up to date with today’s current thinking. Key Features: Examines the most up-to-date methodologies of univariate and multivariate permutation testing. Includes extensive software codes in MATLAB, R and SAS, featuring worked examples, and uses real case studies from both experimental and observational studies. Includes a standalone free software NPC Test Release 10 with a graphical interface which allows practitioners from every scientific field to easily implement almost all complex testing procedures included in the book. Presents and discusses solutions to the most important and frequently encountered real problems in multivariate analyses. A supplementary website containing all of the data sets examined in the book along with ready to use software codes. Together with a wide set of application cases, the Authors present a thorough theory of permutation testing both with formal description and proofs, and analysing real case studies. Practitioners and researchers, working in different scientific fields such as engineering, biostatistics, psychology or medicine will benefit from this book.
A Primer of Permutation Statistical Methods
Author: Kenneth J. Berry
Publisher: Springer
ISBN: 3030209334
Category : Mathematics
Languages : en
Pages : 488
Book Description
The primary purpose of this textbook is to introduce the reader to a wide variety of elementary permutation statistical methods. Permutation methods are optimal for small data sets and non-random samples, and are free of distributional assumptions. The book follows the conventional structure of most introductory books on statistical methods, and features chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, one-way fully-randomized analysis of variance, one-way randomized-blocks analysis of variance, simple regression and correlation, and the analysis of contingency tables. In addition, it introduces and describes a comparatively new permutation-based, chance-corrected measure of effect size. Because permutation tests and measures are distribution-free, do not assume normality, and do not rely on squared deviations among sample values, they are currently being applied in a wide variety of disciplines. This book presents permutation alternatives to existing classical statistics, and is intended as a textbook for undergraduate statistics courses or graduate courses in the natural, social, and physical sciences, while assuming only an elementary grasp of statistics.
Publisher: Springer
ISBN: 3030209334
Category : Mathematics
Languages : en
Pages : 488
Book Description
The primary purpose of this textbook is to introduce the reader to a wide variety of elementary permutation statistical methods. Permutation methods are optimal for small data sets and non-random samples, and are free of distributional assumptions. The book follows the conventional structure of most introductory books on statistical methods, and features chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, one-way fully-randomized analysis of variance, one-way randomized-blocks analysis of variance, simple regression and correlation, and the analysis of contingency tables. In addition, it introduces and describes a comparatively new permutation-based, chance-corrected measure of effect size. Because permutation tests and measures are distribution-free, do not assume normality, and do not rely on squared deviations among sample values, they are currently being applied in a wide variety of disciplines. This book presents permutation alternatives to existing classical statistics, and is intended as a textbook for undergraduate statistics courses or graduate courses in the natural, social, and physical sciences, while assuming only an elementary grasp of statistics.
Permutation Tests for Stochastic Ordering and ANOVA
Author: Dario Basso
Publisher: Springer Science & Business Media
ISBN: 038785956X
Category : Mathematics
Languages : en
Pages : 223
Book Description
Permutation testing for multivariate stochastic ordering and ANOVA designs is a fundamental issue in many scientific fields such as medicine, biology, pharmaceutical studies, engineering, economics, psychology, and social sciences. This book presents new advanced methods and related R codes to perform complex multivariate analyses. The prerequisites are a standard course in statistics and some background in multivariate analysis and R software.
Publisher: Springer Science & Business Media
ISBN: 038785956X
Category : Mathematics
Languages : en
Pages : 223
Book Description
Permutation testing for multivariate stochastic ordering and ANOVA designs is a fundamental issue in many scientific fields such as medicine, biology, pharmaceutical studies, engineering, economics, psychology, and social sciences. This book presents new advanced methods and related R codes to perform complex multivariate analyses. The prerequisites are a standard course in statistics and some background in multivariate analysis and R software.
Principles and Practice of Clinical Trials
Author: Steven Piantadosi
Publisher: Springer Nature
ISBN: 3319526367
Category : Medical
Languages : en
Pages : 2573
Book Description
This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.
Publisher: Springer Nature
ISBN: 3319526367
Category : Medical
Languages : en
Pages : 2573
Book Description
This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.