Author: Takuro Mochizuki
Publisher: Springer Nature
ISBN: 3030945006
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
Periodic Monopoles and Difference Modules
Author: Takuro Mochizuki
Publisher: Springer Nature
ISBN: 3030945006
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
Publisher: Springer Nature
ISBN: 3030945006
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
Periodic Monopoles and Difference Modules
Author: Takuro Mochizuki
Publisher: Springer
ISBN: 9783030944995
Category : Mathematics
Languages : en
Pages : 324
Book Description
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
Publisher: Springer
ISBN: 9783030944995
Category : Mathematics
Languages : en
Pages : 324
Book Description
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
Monopoles and Three-Manifolds
Author: Peter Kronheimer
Publisher:
ISBN: 9780521880220
Category : Mathematics
Languages : en
Pages : 796
Book Description
This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten equations. Suitable for beginning graduate students and researchers in the field, this book provides a full discussion of a central part of the study of the topology of manifolds.
Publisher:
ISBN: 9780521880220
Category : Mathematics
Languages : en
Pages : 796
Book Description
This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg-Witten equations. Suitable for beginning graduate students and researchers in the field, this book provides a full discussion of a central part of the study of the topology of manifolds.
Physics of Surfaces and Interfaces
Author: Harald Ibach
Publisher: Springer Science & Business Media
ISBN: 3540347100
Category : Science
Languages : en
Pages : 653
Book Description
This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
Publisher: Springer Science & Business Media
ISBN: 3540347100
Category : Science
Languages : en
Pages : 653
Book Description
This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
Donaldson Type Invariants for Algebraic Surfaces
Author: Takuro Mochizuki
Publisher: Springer
ISBN: 354093913X
Category : Mathematics
Languages : en
Pages : 404
Book Description
In this monograph, we de?ne and investigate an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface. We may expect the existence of interesting “universal relations among invariants”, which would be a natural generalization of the “wall-crossing formula” and the “Witten conjecture” for classical Donaldson invariants. Our goal is to obtain a weaker version of such relations, in other brief words, to describe a relation as the sum of integrals over the products of m- uli spaces of objects with lower ranks. Fortunately, according to a recent excellent work of L. Gottsche, ̈ H. Nakajima and K. Yoshioka, [53], a wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case. We hope that our work in this monograph would, at least tentatively, provides a part of foundation for the further study on such universal relations. In the rest of this preface, we would like to explain our motivation and some of important ingredients of this study. See Introduction for our actual problems and results. Donaldson Invariants Let us brie?y recall Donaldson invariants. We refer to [22] for more details and precise. We also refer to [37], [39], [51] and [53]. LetX be a compact simply con- ? nected oriented real 4-dimensional C -manifold with a Riemannian metric g. Let P be a principalSO(3)-bundle on X.
Publisher: Springer
ISBN: 354093913X
Category : Mathematics
Languages : en
Pages : 404
Book Description
In this monograph, we de?ne and investigate an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface. We may expect the existence of interesting “universal relations among invariants”, which would be a natural generalization of the “wall-crossing formula” and the “Witten conjecture” for classical Donaldson invariants. Our goal is to obtain a weaker version of such relations, in other brief words, to describe a relation as the sum of integrals over the products of m- uli spaces of objects with lower ranks. Fortunately, according to a recent excellent work of L. Gottsche, ̈ H. Nakajima and K. Yoshioka, [53], a wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case. We hope that our work in this monograph would, at least tentatively, provides a part of foundation for the further study on such universal relations. In the rest of this preface, we would like to explain our motivation and some of important ingredients of this study. See Introduction for our actual problems and results. Donaldson Invariants Let us brie?y recall Donaldson invariants. We refer to [22] for more details and precise. We also refer to [37], [39], [51] and [53]. LetX be a compact simply con- ? nected oriented real 4-dimensional C -manifold with a Riemannian metric g. Let P be a principalSO(3)-bundle on X.
Mirror Symmetry
Author: Kentaro Hori
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Exotic Smoothness And Physics: Differential Topology And Spacetime Models
Author: Torsten Asselmeyer-maluga
Publisher: World Scientific
ISBN: 9814493740
Category : Science
Languages : en
Pages : 339
Book Description
The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.
Publisher: World Scientific
ISBN: 9814493740
Category : Science
Languages : en
Pages : 339
Book Description
The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.
Mixed Twistor D-modules
Author: Takuro Mochizuki
Publisher: Springer
ISBN: 3319100882
Category : Mathematics
Languages : en
Pages : 497
Book Description
We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.
Publisher: Springer
ISBN: 3319100882
Category : Mathematics
Languages : en
Pages : 497
Book Description
We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.
Essentials of Paleomagnetism
Author: Lisa Tauxe
Publisher: Univ of California Press
ISBN: 0520260317
Category : Science
Languages : en
Pages : 505
Book Description
"This book by Lisa Tauxe and others is a marvelous tool for education and research in Paleomagnetism. Many students in the U.S. and around the world will welcome this publication, which was previously only available via the Internet. Professor Tauxe has performed a service for teaching and research that is utterly unique."—Neil D. Opdyke, University of Florida
Publisher: Univ of California Press
ISBN: 0520260317
Category : Science
Languages : en
Pages : 505
Book Description
"This book by Lisa Tauxe and others is a marvelous tool for education and research in Paleomagnetism. Many students in the U.S. and around the world will welcome this publication, which was previously only available via the Internet. Professor Tauxe has performed a service for teaching and research that is utterly unique."—Neil D. Opdyke, University of Florida
Gauge/Gravity Duality
Author: Martin Ammon
Publisher: Cambridge University Press
ISBN: 1107010349
Category : Juvenile Nonfiction
Languages : en
Pages : 549
Book Description
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1107010349
Category : Juvenile Nonfiction
Languages : en
Pages : 549
Book Description
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.