Author: B. Malcolm Brown
Publisher: Springer Science & Business Media
ISBN: 3034805284
Category : Mathematics
Languages : en
Pages : 220
Book Description
Periodic differential operators have a rich mathematical theory as well as important physical applications. They have been the subject of intensive development for over a century and remain a fertile research area. This book lays out the theoretical foundations and then moves on to give a coherent account of more recent results, relating in particular to the eigenvalue and spectral theory of the Hill and Dirac equations. The book will be valuable to advanced students and academics both for general reference and as an introduction to active research topics.
Periodic Differential Operators
Author: B. Malcolm Brown
Publisher: Springer Science & Business Media
ISBN: 3034805284
Category : Mathematics
Languages : en
Pages : 220
Book Description
Periodic differential operators have a rich mathematical theory as well as important physical applications. They have been the subject of intensive development for over a century and remain a fertile research area. This book lays out the theoretical foundations and then moves on to give a coherent account of more recent results, relating in particular to the eigenvalue and spectral theory of the Hill and Dirac equations. The book will be valuable to advanced students and academics both for general reference and as an introduction to active research topics.
Publisher: Springer Science & Business Media
ISBN: 3034805284
Category : Mathematics
Languages : en
Pages : 220
Book Description
Periodic differential operators have a rich mathematical theory as well as important physical applications. They have been the subject of intensive development for over a century and remain a fertile research area. This book lays out the theoretical foundations and then moves on to give a coherent account of more recent results, relating in particular to the eigenvalue and spectral theory of the Hill and Dirac equations. The book will be valuable to advanced students and academics both for general reference and as an introduction to active research topics.
Spectral Analysis of Differential Operators
Author: Fedor S. Rofe-Beketov
Publisher: World Scientific
ISBN: 9812562761
Category : Science
Languages : en
Pages : 463
Book Description
- Detailed bibliographical comments and some open questions are given after each chapter - Indicates connections between the content of the book and many other topics in mathematics and physics - Open questions are formulated and commented with the intention to attract attention of young mathematicians
Publisher: World Scientific
ISBN: 9812562761
Category : Science
Languages : en
Pages : 463
Book Description
- Detailed bibliographical comments and some open questions are given after each chapter - Indicates connections between the content of the book and many other topics in mathematics and physics - Open questions are formulated and commented with the intention to attract attention of young mathematicians
Spectral Theory of Differential Operators
Author: T. Suslina
Publisher: American Mathematical Soc.
ISBN: 9780821890776
Category : Mathematics
Languages : en
Pages : 318
Book Description
"This volume is dedicated to the eightieth birthday of Professor M. Sh. Birman. It contains original articles in spectral and scattering theory of differential operators, in particular, Schrodinger operators, and in homogenization theory. All articles are written by members of M. Sh. Birman's research group who are affiliated with different universities all over the world. A specific feature of the majority of the papers is a combination of traditional methods with new modern ideas."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 9780821890776
Category : Mathematics
Languages : en
Pages : 318
Book Description
"This volume is dedicated to the eightieth birthday of Professor M. Sh. Birman. It contains original articles in spectral and scattering theory of differential operators, in particular, Schrodinger operators, and in homogenization theory. All articles are written by members of M. Sh. Birman's research group who are affiliated with different universities all over the world. A specific feature of the majority of the papers is a combination of traditional methods with new modern ideas."--BOOK JACKET.
Spectral Theory of Ordinary Differential Operators
Author: Joachim Weidmann
Publisher: Springer
ISBN: 3540479120
Category : Mathematics
Languages : en
Pages : 310
Book Description
These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.
Publisher: Springer
ISBN: 3540479120
Category : Mathematics
Languages : en
Pages : 310
Book Description
These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.
Spectral Analysis of Differential Operators
Author: Fedor S. Rofe-Beketov
Publisher: World Scientific
ISBN: 9812703454
Category : Mathematics
Languages : en
Pages : 466
Book Description
This is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigated in the book is the behavior of discrete eigenvalues which appear in spectral gaps of the Hill operator and almost periodic SchrAdinger operators due to local perturbations of the potential (e.g., modeling impurities in crystals). The book is based on results that have not been presented in other monographs. The only prerequisites needed to read it are basics of ordinary differential equations and operator theory. It should be accessible to graduate students, though its main topics are of interest to research mathematicians working in functional analysis, differential equations and mathematical physics, as well as to physicists interested in spectral theory of differential operators."
Publisher: World Scientific
ISBN: 9812703454
Category : Mathematics
Languages : en
Pages : 466
Book Description
This is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigated in the book is the behavior of discrete eigenvalues which appear in spectral gaps of the Hill operator and almost periodic SchrAdinger operators due to local perturbations of the potential (e.g., modeling impurities in crystals). The book is based on results that have not been presented in other monographs. The only prerequisites needed to read it are basics of ordinary differential equations and operator theory. It should be accessible to graduate students, though its main topics are of interest to research mathematicians working in functional analysis, differential equations and mathematical physics, as well as to physicists interested in spectral theory of differential operators."
Periodic Integral and Pseudodifferential Equations with Numerical Approximation
Author: Jukka Saranen
Publisher: Springer Science & Business Media
ISBN: 3662047969
Category : Mathematics
Languages : en
Pages : 461
Book Description
An attractive book on the intersection of analysis and numerical analysis, deriving classical boundary integral equations arising from the potential theory and acoustics. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
Publisher: Springer Science & Business Media
ISBN: 3662047969
Category : Mathematics
Languages : en
Pages : 461
Book Description
An attractive book on the intersection of analysis and numerical analysis, deriving classical boundary integral equations arising from the potential theory and acoustics. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
Homogenization of Differential Operators and Integral Functionals
Author: V.V. Jikov
Publisher: Springer Science & Business Media
ISBN: 3642846599
Category : Mathematics
Languages : en
Pages : 583
Book Description
It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.
Publisher: Springer Science & Business Media
ISBN: 3642846599
Category : Mathematics
Languages : en
Pages : 583
Book Description
It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.
Differential Operators and Spectral Theory
Author: M. Sh Birman
Publisher: American Mathematical Soc.
ISBN: 9780821813874
Category : Mathematics
Languages : en
Pages : 348
Book Description
This volume contains a collection of original papers in mathematical physics, spectral theory and differential equations. The papers are dedicated to the outstanding mathematician, Professor M Sh Birman, on the occasion of his 70th birthday. Contributing authors are leading specialists and close professional coleagues of Birman. The main topics discussed are spectral and scattering theory of differential operators , trace formulas, and boundary value problems for PDEs. Several papers are devoted to the magnetic Schrodinger operator, which is within Birman's current scopeof interests and recently has been studied extensively. Included is a detailed survey of his mathematical work and an updated list of his publications. This book is aimed at graduate students and specialists in the above-mentioned branches of mathematics and theoretical physicists. The biographical section will be of interest to readers concerned with the scientific activities of Birman and the history of those branches of analysis and spectral theory where his contributions were important and often decisive.
Publisher: American Mathematical Soc.
ISBN: 9780821813874
Category : Mathematics
Languages : en
Pages : 348
Book Description
This volume contains a collection of original papers in mathematical physics, spectral theory and differential equations. The papers are dedicated to the outstanding mathematician, Professor M Sh Birman, on the occasion of his 70th birthday. Contributing authors are leading specialists and close professional coleagues of Birman. The main topics discussed are spectral and scattering theory of differential operators , trace formulas, and boundary value problems for PDEs. Several papers are devoted to the magnetic Schrodinger operator, which is within Birman's current scopeof interests and recently has been studied extensively. Included is a detailed survey of his mathematical work and an updated list of his publications. This book is aimed at graduate students and specialists in the above-mentioned branches of mathematics and theoretical physicists. The biographical section will be of interest to readers concerned with the scientific activities of Birman and the history of those branches of analysis and spectral theory where his contributions were important and often decisive.
Spectral Theory of Differential Operators
Author: I.W. Knowles
Publisher: Elsevier
ISBN: 0080871666
Category : Mathematics
Languages : en
Pages : 401
Book Description
Spectral Theory of Differential Operators
Publisher: Elsevier
ISBN: 0080871666
Category : Mathematics
Languages : en
Pages : 401
Book Description
Spectral Theory of Differential Operators
Memorial Volume for Ludwig Faddeev
Author: Mo-Lin Ge
Publisher: World Scientific Publishing Company
ISBN: 9789813233768
Category : Science
Languages : en
Pages : 634
Book Description
Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.
Publisher: World Scientific Publishing Company
ISBN: 9789813233768
Category : Science
Languages : en
Pages : 634
Book Description
Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.