Author: Jerry E. Stephens
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 156
Book Description
The response of a concrete filled, steel pipe pile-to-concrete pile cap connection subjected to extreme lateral loads was experimentally and analytically investigated in this project. This connection is part of a bridge support system used by the Montana Department of Transportation that consists of a linear array of piles connected at the top by a concrete pile cap. Five 1/2 size models of this connection were tested to failure under monotonically increasing and/or cyclic lateral loads. The primary attribute of the connection that was varied between tests was the amount and layout of the reinforcing steel in the pile cap. The depth of embedment of the pipe pile in the cap was held constant. The first tests were done on lightly reinforced pile cap cross-sections, and failure occurred in the pile caps due to tensile cracking of the concrete and yielding of the reinforcing steel adjacent to the pile. In subsequent connections, the amount of reinforcing steel in the cap was increased, and its arrangement was modified, until a plastic hinge occurred in the pipe pile before failure of the cap occurred. The behavior of each connection was analyzed using hand calculations, strut and tie models, and solid finite element models. The hand calculations accurately predicted the nature of the failure mechanism for each connection, but only poorly predicted the magnitude of the failure load. The strut and tie models used in this investigation were created and analyzed using conventional structural analysis software. The resulting models offered significant detail relative the response throughout the pile cap, but were unable to fully represent yielding of the reinforcing steel and the attendant redistribution of stresses within the cap. Sufficiently promising results were obtained relative to predicting the load and location at which inelastic behavior will initiate, that this analysis methodology possibly should be pursued further. Finally, though finite element models were not successfully used to model the damage cycle through cyclic loads as originally hoped, they did prove useful for extracting 3D information leading up to a state of permanent damage. They also show immediate promise for modeling responses to monotonic load conditions, particularly for analysis where concrete damage is not the controlling failure mechanism.
Performance of Steel Pipe Pile-to-concrete Bent Cap Connections Subject to Seismic Or High Transverse Loading, Phase II
Author: Jerry E. Stephens
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 156
Book Description
The response of a concrete filled, steel pipe pile-to-concrete pile cap connection subjected to extreme lateral loads was experimentally and analytically investigated in this project. This connection is part of a bridge support system used by the Montana Department of Transportation that consists of a linear array of piles connected at the top by a concrete pile cap. Five 1/2 size models of this connection were tested to failure under monotonically increasing and/or cyclic lateral loads. The primary attribute of the connection that was varied between tests was the amount and layout of the reinforcing steel in the pile cap. The depth of embedment of the pipe pile in the cap was held constant. The first tests were done on lightly reinforced pile cap cross-sections, and failure occurred in the pile caps due to tensile cracking of the concrete and yielding of the reinforcing steel adjacent to the pile. In subsequent connections, the amount of reinforcing steel in the cap was increased, and its arrangement was modified, until a plastic hinge occurred in the pipe pile before failure of the cap occurred. The behavior of each connection was analyzed using hand calculations, strut and tie models, and solid finite element models. The hand calculations accurately predicted the nature of the failure mechanism for each connection, but only poorly predicted the magnitude of the failure load. The strut and tie models used in this investigation were created and analyzed using conventional structural analysis software. The resulting models offered significant detail relative the response throughout the pile cap, but were unable to fully represent yielding of the reinforcing steel and the attendant redistribution of stresses within the cap. Sufficiently promising results were obtained relative to predicting the load and location at which inelastic behavior will initiate, that this analysis methodology possibly should be pursued further. Finally, though finite element models were not successfully used to model the damage cycle through cyclic loads as originally hoped, they did prove useful for extracting 3D information leading up to a state of permanent damage. They also show immediate promise for modeling responses to monotonic load conditions, particularly for analysis where concrete damage is not the controlling failure mechanism.
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 156
Book Description
The response of a concrete filled, steel pipe pile-to-concrete pile cap connection subjected to extreme lateral loads was experimentally and analytically investigated in this project. This connection is part of a bridge support system used by the Montana Department of Transportation that consists of a linear array of piles connected at the top by a concrete pile cap. Five 1/2 size models of this connection were tested to failure under monotonically increasing and/or cyclic lateral loads. The primary attribute of the connection that was varied between tests was the amount and layout of the reinforcing steel in the pile cap. The depth of embedment of the pipe pile in the cap was held constant. The first tests were done on lightly reinforced pile cap cross-sections, and failure occurred in the pile caps due to tensile cracking of the concrete and yielding of the reinforcing steel adjacent to the pile. In subsequent connections, the amount of reinforcing steel in the cap was increased, and its arrangement was modified, until a plastic hinge occurred in the pipe pile before failure of the cap occurred. The behavior of each connection was analyzed using hand calculations, strut and tie models, and solid finite element models. The hand calculations accurately predicted the nature of the failure mechanism for each connection, but only poorly predicted the magnitude of the failure load. The strut and tie models used in this investigation were created and analyzed using conventional structural analysis software. The resulting models offered significant detail relative the response throughout the pile cap, but were unable to fully represent yielding of the reinforcing steel and the attendant redistribution of stresses within the cap. Sufficiently promising results were obtained relative to predicting the load and location at which inelastic behavior will initiate, that this analysis methodology possibly should be pursued further. Finally, though finite element models were not successfully used to model the damage cycle through cyclic loads as originally hoped, they did prove useful for extracting 3D information leading up to a state of permanent damage. They also show immediate promise for modeling responses to monotonic load conditions, particularly for analysis where concrete damage is not the controlling failure mechanism.
Concrete-filled Tube Bridge Pier Connections for Accelerated Bridge Construction
Author: Max Taylor Stephens
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 216
Book Description
Publisher:
ISBN:
Category : Bridges
Languages : en
Pages : 216
Book Description
Minimum Design Loads for Buildings and Other Structures
Author: American Society of Civil Engineers
Publisher: Amer Society of Civil Engineers
ISBN: 9780784404881
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Publisher: Amer Society of Civil Engineers
ISBN: 9780784404881
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Guide Specifications for Seismic Isolation Design
Author:
Publisher: AASHTO
ISBN: 1560514566
Category : Technology & Engineering
Languages : en
Pages : 63
Book Description
This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.
Publisher: AASHTO
ISBN: 1560514566
Category : Technology & Engineering
Languages : en
Pages : 63
Book Description
This edition is based on the work of NCHRP project 20-7, task 262 and updates the 2nd (1999) edition -- P. ix.
AASHTO Guide Specifications for LRFD Seismic Bridge Design
Author:
Publisher: AASHTO
ISBN: 156051521X
Category : Bridges
Languages : en
Pages : 271
Book Description
This work offers guidance on bridge design for extreme events induced by human beings. This document provides the designer with information on the response of concrete bridge columns subjected to blast loads as well as blast-resistant design and detailing guidelines and analytical models of blast load distribution. The content of this guideline should be considered in situations where resisting blast loads is deemed warranted by the owner or designer.
Publisher: AASHTO
ISBN: 156051521X
Category : Bridges
Languages : en
Pages : 271
Book Description
This work offers guidance on bridge design for extreme events induced by human beings. This document provides the designer with information on the response of concrete bridge columns subjected to blast loads as well as blast-resistant design and detailing guidelines and analytical models of blast load distribution. The content of this guideline should be considered in situations where resisting blast loads is deemed warranted by the owner or designer.
Transactions of the American Society of Civil Engineers
Author: American Society of Civil Engineers
Publisher:
ISBN:
Category : Civil engineering
Languages : en
Pages : 1264
Book Description
Vols. 29-30 contain papers of the International Engineering Congress, Chicago, 1893; v. 54, pts. A-F, papers of the International Engineering Congress, St. Louis, 1904.
Publisher:
ISBN:
Category : Civil engineering
Languages : en
Pages : 1264
Book Description
Vols. 29-30 contain papers of the International Engineering Congress, Chicago, 1893; v. 54, pts. A-F, papers of the International Engineering Congress, St. Louis, 1904.
Integrated Probabilistic Performance-based Evaluation of Benchmark Reinforced Concrete Bridges
Author: Kevin Rory Mackie
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 180
Book Description
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 180
Book Description
Cellular Cofferdams
Author: Pile Buck
Publisher: Lulu.com
ISBN: 1105155242
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This working manual covers everything from theory, practical design, templates, installation, filling, equipment, maintenance to removal. With the combination of the TVA Technical Monograph 75-Steel Sheet Pile Cofferdams on the Rock manual and the US Corps of Engineers manual - Theoretical Manual for Design of Cellular Sheet Pile Structures our Cellular Cofferdams handbook make for an excellent reference book. Cellular Cofferdams, the large, barrel-like, interconnected structures formed of steel sheet piling and filled with coarse soil. Generally utilized for dewatering large construction sites as well as building piers, quaywalls, bulkheads, breakwaters and artificial islands. Over the years, a few papers on design theory have come forth, but only one complete publication devoted to the entire subject.
Publisher: Lulu.com
ISBN: 1105155242
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This working manual covers everything from theory, practical design, templates, installation, filling, equipment, maintenance to removal. With the combination of the TVA Technical Monograph 75-Steel Sheet Pile Cofferdams on the Rock manual and the US Corps of Engineers manual - Theoretical Manual for Design of Cellular Sheet Pile Structures our Cellular Cofferdams handbook make for an excellent reference book. Cellular Cofferdams, the large, barrel-like, interconnected structures formed of steel sheet piling and filled with coarse soil. Generally utilized for dewatering large construction sites as well as building piers, quaywalls, bulkheads, breakwaters and artificial islands. Over the years, a few papers on design theory have come forth, but only one complete publication devoted to the entire subject.
Piles in Weak Rock
Author:
Publisher: Thomas Telford
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Publisher: Thomas Telford
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Pile Design and Construction Practice, Fifth Edition
Author: Michael Tomlinson
Publisher: CRC Press
ISBN: 0415385822
Category : Technology & Engineering
Languages : en
Pages : 14
Book Description
This international handbook is essential for geotechnical engineers and engineering geologists responsible for designing and constructing piled foundations. It explains general principles and practice and details current types of pile, piling equipment and methods. It includes calculations of the resistance of piles to compressive loads, pile groups under compressive loading, piled foundations for resisting uplift and lateral loading and the structural design of piles and pile groups. Marine structures, miscellaneous problems (including machinery foundations, underpinning, mining subsidence areas, contracts and frozen ground), durability of piled foundations, ground investigations, and pile testing are also covered. It introduces the 2005 version of Eurocode7, BS 8004 and other codes, and refers to BS 6349 on maritime structures, and new forms of civil engineering contracts suitable for piling projects. It includes numerous worked examples to the codes, many based on actual problems. It also gives very comprehensive information for students.
Publisher: CRC Press
ISBN: 0415385822
Category : Technology & Engineering
Languages : en
Pages : 14
Book Description
This international handbook is essential for geotechnical engineers and engineering geologists responsible for designing and constructing piled foundations. It explains general principles and practice and details current types of pile, piling equipment and methods. It includes calculations of the resistance of piles to compressive loads, pile groups under compressive loading, piled foundations for resisting uplift and lateral loading and the structural design of piles and pile groups. Marine structures, miscellaneous problems (including machinery foundations, underpinning, mining subsidence areas, contracts and frozen ground), durability of piled foundations, ground investigations, and pile testing are also covered. It introduces the 2005 version of Eurocode7, BS 8004 and other codes, and refers to BS 6349 on maritime structures, and new forms of civil engineering contracts suitable for piling projects. It includes numerous worked examples to the codes, many based on actual problems. It also gives very comprehensive information for students.