Performance-based Plastic Design

Performance-based Plastic Design PDF Author: Subhash Chandra Goel
Publisher:
ISBN: 9781580017145
Category : Building, Iron and steel
Languages : en
Pages : 261

Get Book Here

Book Description

Performance-based Plastic Design

Performance-based Plastic Design PDF Author: Subhash Chandra Goel
Publisher:
ISBN: 9781580017145
Category : Building, Iron and steel
Languages : en
Pages : 261

Get Book Here

Book Description


Plastic Design and Second-Order Analysis of Steel Frames

Plastic Design and Second-Order Analysis of Steel Frames PDF Author: W.F. Chen
Publisher: Springer
ISBN: 1461384281
Category : Technology & Engineering
Languages : en
Pages : 519

Get Book Here

Book Description
Plastic Design of Steel Frames assesses the current status and future direction of computer-based analyses of inelastic strength and stability for direct frame design. It shows how design rules are used in practical frame design and provides an introduction to the second-order theory of inelastic frame design. The book includes two computer programs on a diskette: one for the first-order analyses and the other for the second-order plastic hinge analysis of planar frame design. The second-order program can be used to predict realistic strengths and stabilities of planar frames, thereby eliminating the tedious task of estimating factors for individual member capacity checks. Both programs include clear input instructions. The diskette also contains the Fortran source-code listing for the second-order plastic-hinge analysis, enabling the user to customize the program. The programs will run on an IBM PC-AT or equivalent machine with 640 kB of memory and 30 MB hard drive.

Performance Based Seismic Design for Tall Buildings

Performance Based Seismic Design for Tall Buildings PDF Author: Ramin Golesorkhi
Publisher:
ISBN: 9780939493562
Category : Buildings
Languages : en
Pages : 116

Get Book Here

Book Description
Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.

Plastic Methods for Steel and Concrete Structures

Plastic Methods for Steel and Concrete Structures PDF Author: Stuart S. J. Moy
Publisher: Palgrave
ISBN: 9780333275641
Category : Building, Iron and steel
Languages : en
Pages : 221

Get Book Here

Book Description
Plastic behaviour and the methods for calculating the collapse load of steel structures are discussed and examined. An explanation of the effects of deflections, instability and imperfections on the collapse of structures is followed by a description of the design methods for steel structures.

Plastic Analysis and Design of Steel Structures

Plastic Analysis and Design of Steel Structures PDF Author: M. Bill Wong
Publisher: Butterworth-Heinemann
ISBN: 0080941850
Category : Technology & Engineering
Languages : en
Pages : 257

Get Book Here

Book Description
The plastic analysis method has been used extensively by engineers for designing steel structures. Simpler structures can be analyzed using the basic virtual work formulation, but more complex frames are evaluated with specialist computer software. This new book sets out a method for carrying out plastic analysis of complex structures without the need for specialist tools.The book provides an introduction to the use of linear programming techniques for plastic analysis. This powerful and advanced method for plastic analysis is important in an automated computational environment, in particular for non-linear structural analysis.A detailed comparison between the design codes for the United States and Australia and the emerging European Eurocodes enables practising engineers to understand the issues involved in plastic design procedures and the limitations imposed by this design method. Covers latest research in plastic analysis and analytical tools Introduces new successive approximation method for calculating collapse loads Programming guide for using spreadsheet tools for plastic analysis

Plastics Engineered Product Design

Plastics Engineered Product Design PDF Author: D.V. Rosato
Publisher: Elsevier
ISBN: 0080514073
Category : Technology & Engineering
Languages : en
Pages : 588

Get Book Here

Book Description
• A comprehensive book which collates the experience of two well-known US plastic engineers.• Enables engineers to make informed decisions.• Includes a unique chronology of the world of plastics. The use of plastics is increasing year on year, and new uses are being found for plastics in many industries. Designers using plastics need to understand the nature and properties of the materials which they are using so that the products perform to set standards. This book, written by two very experienced plastics engineers, provides copious information on the materials, fabrication processes, design considerations and plastics performance, thus allowing informed decisions to be made by engineers. It also includes a useful chronology of the world of plastics, a resource not found elsewhere.

Plastics Design Handbook

Plastics Design Handbook PDF Author: Marlene G. Rosato
Publisher: Springer Science & Business Media
ISBN: 1461513995
Category : Technology & Engineering
Languages : en
Pages : 697

Get Book Here

Book Description
This book provides a simplified and practical approach to designing with plastics that funda mentally relates to the load, temperature, time, and environment subjected to a product. It will provide the basic behaviors in what to consider when designing plastic products to meet performance and cost requirements. Important aspects are presented such as understanding the advantages of different shapes and how they influence designs. Information is concise, comprehensive, and practical. Review includes designing with plastics based on material and process behaviors. As de signing with any materials (plastic, steel, aluminum, wood, etc.) it is important to know their behaviors in order to maximize product performance-to-cost efficiency. Examples of many different designed products are reviewed. They range from toys to medical devices to cars to boats to underwater devices to containers to springs to pipes to buildings to aircraft to space craft. The reader's product to be designed can directly or indirectly be related to product design reviews in the book. Important are behaviors associated and interrelated with plastic materials (thermoplastics, thermosets, elastomers, reinforced plastics, etc.) and fabricating processes (extrusion, injec tion molding, blow molding, forming, foaming, rotational molding, etc.). They are presented so that the technical or non-technical reader can readily understand the interrelationships.

Seismic Hazards and Risk

Seismic Hazards and Risk PDF Author: T. G. Sitharam
Publisher: Springer Nature
ISBN: 9811599769
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include seismic risk assessment, engineering seismology, wave propagation, remote sensing applications for geohazards,engineering vibrations, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.

Design of Reinforced Concrete Buildings for Seismic Performance

Design of Reinforced Concrete Buildings for Seismic Performance PDF Author: Mark Aschheim
Publisher: CRC Press
ISBN: 148226692X
Category : Technology & Engineering
Languages : en
Pages : 576

Get Book Here

Book Description
The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.

Performance-based Plastic Design of Earthquake Resistant Steel Structures

Performance-based Plastic Design of Earthquake Resistant Steel Structures PDF Author: Mohammad Reza Bayat
Publisher:
ISBN:
Category : Earthquake engineering
Languages : en
Pages :

Get Book Here

Book Description
It is well known that structures designed by current codes experience large inelastic deformations during major earthquakes. However, current seismic design practice in the U.S. is based on elastic structural behavior and accounts for inelastic behavior only in an indirect manner through certain modification factors such as R, I, and Cd. Under moderate to severe earthquakes, inelastic activity, including severe yielding and buckling of structural members can be unevenly distributed in the structure which may result in global collapse or costly repair work. Recently, a new design method has been developed and referred to as Performance-Based Plastic Design (PBPD). This method directly accounts for inelastic behavior by using pre-selected target drift and yield mechanism as key performance limit states. In this research work, the application of PBPD is successfully extended to design of mid-rise to tall steel Concentrically Braced Frames (CBF) with increased confidence level against collapse and also to tall steel Moment Frames (MF). The PBPD procedure for design of Steel Plate Shear Walls (SPSW) is also developed. The PBPD method is extended to design of mid-rise to tall CBF structures by proposing several key modifications in the calculation of design base shear. These include: consideration of column axial deformations in estimation of yield and target drifts, lateral force distribution to prevent large story drifts at upper stories due to higher mode effects, and target drift by proposed lambda-factor to account for pinched hysteretic behavior. Moreover, different methods are suggested to enhance the confidence level of mid- to high-rise CBF structures against collapse. These methods include: increase in design base shear by using slightly larger lambda-factor for mid- to high-rise frames, using Split-X configuration for braces, and increasing the minimum required fracture life, Nf. Application of PBPD method in design of tall MF structures is successfully carried out. Modifications for design of tall MF systems, primarily on design of columns, are proposed to achieve this goal. The current PBPD procedure for design of columns in steel MF structures works well for low-rise frames, but results in overdesigned sections for mid- to high-rise frames. It is shown that by applying the proposed modifications in design of tall MF, excellent seismic performance under pushover as well as time-history analyses can be achieved. The PBPD procedure for design of SPSW, an emerging lateral load resisting system, is developed. This procedure uses target drift and yield mechanism as key performance limit states. The pinched hysteretic behavior of SPSW is directly accounted for in this method by using the proposed lambda-factor method. By applying this method in the design of a 4-story SPSW frame, it was shown that the proposed PBPD procedure works very well for design of these systems. The performance criteria of target drifts and yield mechanisms were successfully met for the PBPD designs. In addition, with the proposed PBPD procedure, multiple level design based on appropriate target drifts for each hazard level, can be easily implemented. In general, the PBPD designed frames showed improved performance compared to the code designed SPSW frame, especially under MCE ground motions.