Protein Self-Assembly

Protein Self-Assembly PDF Author: Jennifer J. McManus
Publisher: Humana
ISBN: 9781493996803
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Protein Self-Assembly

Protein Self-Assembly PDF Author: Jennifer J. McManus
Publisher: Humana
ISBN: 9781493996803
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Peptide-Based Materials

Peptide-Based Materials PDF Author: Timothy Deming
Publisher: Springer Science & Business Media
ISBN: 3642271391
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description
Synthesis of Polypeptides by Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides, by Jianjun Cheng and Timothy J. Deming.- Peptide Synthesis and Self-Assembly, by S. Maude, L. R. Tai, R. P. W. Davies, B. Liu, S. A. Harris, P. J. Kocienski and A. Aggeli.- Elastomeric Polypeptides, by Mark B. van Eldijk, Christopher L. McGann, Kristi L. Kiick andJan C. M. van Hest.- Self-Assembled Polypeptide and Polypeptide Hybrid Vesicles: From Synthesis to Application, by Uh-Joo Choe, Victor Z. Sun, James-Kevin Y. Tan and Daniel T. Kamei.- Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering, by Aysegul Altunbas and Darrin J. Pochan.-

Artificial Protein and Peptide Nanofibers

Artificial Protein and Peptide Nanofibers PDF Author: Gang Wei
Publisher: Woodhead Publishing
ISBN: 0081028512
Category : Technology & Engineering
Languages : en
Pages : 504

Get Book Here

Book Description
Artificial Protein and Peptide Nanofibers: Design, Fabrication, Characterization, and Applications provides comprehensive knowledge of the preparation, modification and applications of protein and peptide nanofibers. The book reviews the synthesis and strategies necessary to create protein and peptide nanofibers, such as self-assembly (including supramolecular assembly), electrospinning, template synthesis, and enzymatic synthesis. Then, the key chemical modification and molecular design methods are highlighted that can be utilized to improve the bio-functions of these synthetic fibers. Finally, fabrication methods for key applications, such as sensing, drug delivery, imaging, tissue engineering and electronic devices are reviewed. This book will be an ideal resource for those working in materials science, polymer science, chemical engineering, nanotechnology and biomedicine. - Reviews key chemical modification and molecular design methods to improve the bio-functions of synthetic peptide and protein nanofibers - Discusses the most important synthesis strategies, including supramolecular assembly, electrospinning, template synthesis and enzymatic synthesis - Provides information on fabrication of nanofibers for key applications such as sensing, imaging, drug delivery and tissue engineering

Self-assembling Biomaterials

Self-assembling Biomaterials PDF Author: Helena S. Azevedo
Publisher: Woodhead Publishing
ISBN: 0081020120
Category : Technology & Engineering
Languages : en
Pages : 614

Get Book Here

Book Description
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. - Explores both theoretical and practical aspects of self-assembly in biomaterials - Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials - Examines the use of dynamic self-assembling biomaterials

Nanoscale Assembly

Nanoscale Assembly PDF Author: Wilhelm T.S. Huck
Publisher: Springer Science & Business Media
ISBN: 0387256563
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
Nanotechnology has received tremendous interest over the last decade, not only from the scientific community but also from a business perspective and from the general public. Although nanotechnology is still at the largely unexplored frontier of science, it has the potential for extremely exciting technological innovations that will have an enormous impact on areas as diverse as information technology, medicine, energy supply and probably many others. The miniturization of devices and structures will impact the speed of devices and information storage capacity. More importantly, though, nanotechnology should lead to completely new functional devices as nanostructures have fundamentally different physical properties that are governed by quantum effects. When nanometer sized features are fabricated in materials that are currently used in electronic, magnetic, and optical applications, quantum behavior will lead to a set of unprecedented properties. The interactions of nanostructures with biological materials are largely unexplored. Future work in this direction should yield enabling technologies that allows the study and direct manipulation of biological processes at the (sub) cellular level.

Peptide Self-Assembly and Engineering

Peptide Self-Assembly and Engineering PDF Author: Xuehai Yan
Publisher: John Wiley & Sons
ISBN: 3527841253
Category : Science
Languages : en
Pages : 933

Get Book Here

Book Description
Peptide Self-Assembly and Engineering State-of-the-art research in peptide self-assembly, with coverage of fundamental aspects of how peptides self-assemble and an extensive number of applications Peptide Self-Assembly and Engineering: Fundamentals, Structures, and Applications (2V set) covers the latest progresses in the field of peptide self-assembly and engineering, including the fundamental principles of peptide self-assembly, new theory of nucleation and growth, thermodynamics and kinetics, materials design rules, and precisely controlled structures and unique functions. The broad contents from this book enable readers to obtain a systematical and comprehensive knowledge in the field of peptide self-assembly and engineering. Contributed by the leading scientists and edited by a highly qualified academic and an authority in the field, Peptide Self-Assembly and Engineering includes information on: Emerging areas in peptide assembly, such as immune agents, bioelectronics, energy conversion, flexible sensors, biomimetic catalysis, and more Existing applications in biomedical engineering, nanotechnology, and photoelectronics, including tissue engineering, drug delivery, and biosensing devices History of peptide self-assembly for design of functional materials and peptides’ unique mechanical, optical, electronic, and biological properties Various solvent conditions, such as pH, ionic strength, and polarity, that can affect the structure and stability of peptide assemblies A very comprehensive reference covering the latest progresses in the field of peptide self-assembly and engineering, Peptide Self-Assembly and Engineering is an essential resource for all scientists performing research intersecting with the subject, including biochemists, biotechnologists, pharmaceutical chemists, protein chemists, materials scientists, and medicinal chemists.

Introduction to Peptide Science

Introduction to Peptide Science PDF Author: Ian W. Hamley
Publisher: John Wiley & Sons
ISBN: 1119698189
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
Provides an interdisciplinary introduction to peptide science, covering their properties and synthesis, as well as many contemporary applications Peptides are biomolecules comprised of amino acids which play an important role in modulating many physiological processes in our body. This book presents an interdisciplinary approach and general introduction to peptide science, covering contemporary topics including their applicability in therapeutics, peptide hormones, amyloid structures, self-assembled structures, hydrogels, and peptide conjugates including lipopeptides and polymer-peptide conjugates. In addition, it discusses basic properties and synthesis clearly and concisely. Taking a logical approach to the subject, Introduction to Peptide Science gives readers the fundamental knowledge that is required to understand the cutting-edge material which comes later in the book. It offers readers in-depth chapter coverage of the basic properties of peptides; synthesis; amyloid and peptide aggregate structures; antimicrobial peptides and cell-penetrating peptides; and peptide therapeutics and peptide hormones. Introduces readers to peptide science, including synthesis and properties Provides unique content covering properties, synthesis, self-assembly, aggregation, and applications Summarizes contemporary topics in an accessible fashion including applications in therapeutics, peptide hormones, amyloid structures, self-assembled structures, hydrogels, and peptide conjugates including lipopeptides Presented at an introductory level for the benefit of students and researchers who are new to the subject Introduction to Peptide Science is an ideal text for undergraduate students of chemistry, biochemistry, and other related biological subjects, and will be a valuable resource for postgraduate students and researchers involved in peptide science and its applications.

Self-Assembled Nanomaterials I

Self-Assembled Nanomaterials I PDF Author: Toshimi Shimizu
Publisher: Springer Science & Business Media
ISBN: 354085102X
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
This text was ranked by ISI as having the Highest Impact Factor of all publications within Polymer Science. It is a collection of concise reports on the physics and chemistry of polymers.

Peptide Materials

Peptide Materials PDF Author: Carlos Aleman
Publisher: Wiley
ISBN: 9781119953739
Category : Technology & Engineering
Languages : en
Pages : 460

Get Book Here

Book Description
Peptides are the building blocks of the natural world; with varied sequences and structures, they enrich materials producing more complex shapes, scaffolds and chemical properties with tailorable functionality. Essentially based on self-assembly and self-organization and mimicking the strategies that occur in Nature, peptide materials have been developed to accomplish certain functions such as the creation of specific secondary structures (a- or 310-helices, b-turns, b-sheets, coiled coils) or biocompatible surfaces with predetermined properties. They also play a key role in the generation of hybrid materials e.g. as peptide-inorganic biomineralized systems and peptide/polymer conjugates, producing smart materials for imaging, bioelectronics, biosensing and molecular recognition applications. Organized into four sections, the book covers the fundamentals of peptide materials, peptide nanostructures, peptide conjugates and hybrid nanomaterials, and applications with chapters including: Properties of peptide scaffolds in solution and on solid substrates Nanostructures, peptide assembly, and peptide nanostructure design Soft spherical structures obtained from amphiphilic peptides and peptide-polymer hybrids Functionalization of carbon nanotubes with peptides Adsorption of peptides on metal and oxide surfaces Peptide applications including tissue engineering, molecular switches, peptide drugs and drug delivery Peptide Materials: From Nanostructures to Applications gives a truly interdisciplinary review, and should appeal to graduate students and researchers in the fields of materials science, nanotechnology, biomedicine and engineering as well as researchers in biomaterials and bio-inspired smart materials.

Peptide-based Biomaterials

Peptide-based Biomaterials PDF Author: Mustafa O. Guler
Publisher: Royal Society of Chemistry
ISBN: 1839161159
Category : Science
Languages : en
Pages : 413

Get Book Here

Book Description
Research and new tools in biomaterials development by using peptides are currently growing, as more functional and versatile building blocks are used to design a host of functional biomaterials via chemical modifications for health care applications. It is a field that is attracting researchers from across soft matter science, molecular engineering and biomaterials science. Covering the fundamental concepts of self-assembly, design and synthesis of peptides, this book will provide a solid introduction to the field for those interested in developing functional biomaterials by using peptide derivatives. The bioactive nature of the peptides and their physical properties are discussed in various applications in biomedicine. This book will help researchers and students working in biomaterials and biomedicine fields and help their understanding of modulating biological processes for disease diagnosis and treatments.